
The McEliece 
Cryptosystem 



Introduction

 This public key cryptosystem, introduced by McEliece 
in 1978, is similar to the Merkle-Hellman Knapsack 
cryptosystem in that it takes an easy case of an NP-
problem and disguises it to look like the hard instance of 
the problem. In this cryptosystem, the problem that is 
used is drawn from the theory of error-correcting codes.



The Problem
Syndrome decoding of linear codes (when considered as a decision 
problem) is an NP-complete problem if the number of errors is not 
bounded. However, there are classes of linear codes which have 
very fast decoding algorithms. The basic idea of the McEliece 
system is to take one of these linear codes and disguise it so that 
Oscar, when trying to decrypt a message, is forced to use 
syndrome decoding, while Bob, who set up the system, can remove 
the disguise and use the fast decoding algorithm. McEliece 
suggested using Goppa Codes, which are linear codes with a fast 
decoding algorithm, in the system, but any linear code with a good 
decoding algorithm can be used.



The Cryptosystem
 Let C be an [n,k]-linear code with a fast decoding algorithm that 
can correct t or fewer errors. Let G be a generator matrix for C. To 
create the disguise, let S be a k × k invertible matrix (the 
scrambler) and let P be an n × n permutation matrix (i.e., having a 
single 1 in each row and column and 0's everywhere else). The 
matrix,
                                      G' = SGP 
is made public while S, G and P are kept secret by Bob. For Alice 
to send a message to Bob, she blocks her message into binary 
vectors of length k. If x is one such block, she randomly constructs 
a binary n-vector of weight t (that is, she randomly places t 1's in a 
zero vector of length n), call it e and then sends to Bob the vector
                                     y = xG' + e.



The Cryptosystem
Oscar, upon intercepting this message, would have to find the 
nearest codeword to y of the code generated by G'. This would 
involve calculating the syndrome of y and comparing it to the 
syndromes of all the error vectors of weight t. As there are        of 
these error vectors, good choices of n and t will make this 
computation infeasible.

 Bob, on the other hand, would calculate
                   yP-1 = (xG' + e)P-1 = xSG + eP-1 = xSG + e' 
where e' is a vector of weight t (since P-1 is also a permutation 
matrix). Bob now applies the fast decoding algorithm to strip off the 
error vector e' and get the code word (xS)G. 

nt 



The Cryptosystem
The vector xS can now be obtained by multiplying by G-1 on the 
right (however, if Bob had been smart, he would have written G in 
standard form [I

k
 A], and then xS would just be the first k 

positions of xSG and this multiplication would not be needed). 
Finally, Bob gets x by multiplying xS on the right by S-1. 

For McEleice's Goppa Code example, n = 1024 and t = 50 which 
gives Oscar more than 1080 syndromes to calculate.



An Example
For an example we shall use the (7,4) Hamming code which 
corrects all single errors. A generator matrix for this code is given 
by (note the clever choice):

G=1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1


and Bob chooses the scrambler matrix

S=1 1 0 1
1 0 0 1
0 1 1 1
1 1 0 0





An Example
and the permutation matrix

P=
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0


Bob makes public the generator matrix

G '=S G P=1 1 1 1 0 0 0
1 1 0 0 1 0 0
1 0 0 1 1 0 1
0 1 0 1 1 1 0





An Example
If Alice wishes to send the message x = (1 1 0 1) to Bob, she first 
constructs a weight 1 error vector, say e = (0  0  0  0  1  0  0) and 
computes 
                  y = xG' + e 
                    = (0  1  1  0  0  1  0) + (0  0  0  0  1  0  0)
                    = (0  1  1  0  1  1  0)
which she then sends to Bob. 
Upon receiving y, Bob first computes y' = yP-1, where 

P−1=
0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 1 0 0 0 0


obtaining y' = (1  0  0  0  1  1  1).



An Example
Now Bob decodes y' by the fast decoding algorithm (Hamming 
decoding in this example). The error occurs in position 7 (details 
omitted). Bob now has the code word y'' = (1  0  0  0  1  1  0). 
Because of the clever choice for G, Bob knows that xS = (1  0  0  0), 
and he can now obtain x by multiplying by the matrix
                       

S−1=1 1 0 1
1 1 0 0
0 1 1 1
1 0 0 1


obtaining x = (1  0  0  0)S-1 = (1  1  0  1).



Drawbacks
There are three major concerns with the McEliece cryptosystem.

1. The size of the public key (G') is quite large. Using the Goppa 
code with parameters suggested by McEliece, the public key would 
consist of 219 bits. This will certainly cause implementation 
problems.

2. The encrypted message is much longer than the plaintext message. 
This increase of the bandwidth makes the system more prone to 
transmission errors.

3. The cryptosystem can not be used for authentication or signature 
schemes because the encryption algorithm is not one-to-one and the 
total algorithm is truly asymmetric (encryption and decryption do 
not commute).



Security

The McEliece cryptosystem is considered to be fairly 
secure. However, in 1986 Rao and Nam proposed a variant 
of the system using only one matrix to disguise the problem 
and the following year Struik and Tilburg showed how to 
break the Rao-Nam system. 



Goppa Codes
Although we will not describe the Goppa Codes here, we will 
present a few facts about them.

For each irreducible polynomial of degree t over GF(2m) there 
corresponds a binary, irreducible Goppa Code of length n = 2m, 
dimension k ≥ n-tm and minimum distance d ≥ 2t+1. A fast 
decoding algorithm, with running time nt, exists. Goppa Codes are 
easily set up once the irreducible polynomial is found. This is not 
difficult since there are about 2mt/t irreducible polynomials of degree 
t over GF(2m). So, a random polynomial of degree t over GF(2m) will 
be irreducible with probability 1/t. Since there is a fast algorithm for 
testing irreduciblity, one can find one quickly by simply guessing 
and testing.


