
The McEliece
Cryptosystem

Introduction

 This public key cryptosystem, introduced by McEliece
in 1978, is similar to the Merkle-Hellman Knapsack
cryptosystem in that it takes an easy case of an NP-
problem and disguises it to look like the hard instance of
the problem. In this cryptosystem, the problem that is
used is drawn from the theory of error-correcting codes.

The Problem
Syndrome decoding of linear codes (when considered as a decision
problem) is an NP-complete problem if the number of errors is not
bounded. However, there are classes of linear codes which have
very fast decoding algorithms. The basic idea of the McEliece
system is to take one of these linear codes and disguise it so that
Oscar, when trying to decrypt a message, is forced to use
syndrome decoding, while Bob, who set up the system, can remove
the disguise and use the fast decoding algorithm. McEliece
suggested using Goppa Codes, which are linear codes with a fast
decoding algorithm, in the system, but any linear code with a good
decoding algorithm can be used.

The Cryptosystem
 Let C be an [n,k]-linear code with a fast decoding algorithm that
can correct t or fewer errors. Let G be a generator matrix for C. To
create the disguise, let S be a k × k invertible matrix (the
scrambler) and let P be an n × n permutation matrix (i.e., having a
single 1 in each row and column and 0's everywhere else). The
matrix,
 G' = SGP
is made public while S, G and P are kept secret by Bob. For Alice
to send a message to Bob, she blocks her message into binary
vectors of length k. If x is one such block, she randomly constructs
a binary n-vector of weight t (that is, she randomly places t 1's in a
zero vector of length n), call it e and then sends to Bob the vector
 y = xG' + e.

The Cryptosystem
Oscar, upon intercepting this message, would have to find the
nearest codeword to y of the code generated by G'. This would
involve calculating the syndrome of y and comparing it to the
syndromes of all the error vectors of weight t. As there are of
these error vectors, good choices of n and t will make this
computation infeasible.

 Bob, on the other hand, would calculate
 yP-1 = (xG' + e)P-1 = xSG + eP-1 = xSG + e'
where e' is a vector of weight t (since P-1 is also a permutation
matrix). Bob now applies the fast decoding algorithm to strip off the
error vector e' and get the code word (xS)G.

nt 

The Cryptosystem
The vector xS can now be obtained by multiplying by G-1 on the
right (however, if Bob had been smart, he would have written G in
standard form [I

k
 A], and then xS would just be the first k

positions of xSG and this multiplication would not be needed).
Finally, Bob gets x by multiplying xS on the right by S-1.

For McEleice's Goppa Code example, n = 1024 and t = 50 which
gives Oscar more than 1080 syndromes to calculate.

An Example
For an example we shall use the (7,4) Hamming code which
corrects all single errors. A generator matrix for this code is given
by (note the clever choice):

G=1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1


and Bob chooses the scrambler matrix

S=1 1 0 1
1 0 0 1
0 1 1 1
1 1 0 0



An Example
and the permutation matrix

P=
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0


Bob makes public the generator matrix

G '=S G P=1 1 1 1 0 0 0
1 1 0 0 1 0 0
1 0 0 1 1 0 1
0 1 0 1 1 1 0



An Example
If Alice wishes to send the message x = (1 1 0 1) to Bob, she first
constructs a weight 1 error vector, say e = (0 0 0 0 1 0 0) and
computes
 y = xG' + e
 = (0 1 1 0 0 1 0) + (0 0 0 0 1 0 0)
 = (0 1 1 0 1 1 0)
which she then sends to Bob.
Upon receiving y, Bob first computes y' = yP-1, where

P−1=
0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 1 0 0 0 0


obtaining y' = (1 0 0 0 1 1 1).

An Example
Now Bob decodes y' by the fast decoding algorithm (Hamming
decoding in this example). The error occurs in position 7 (details
omitted). Bob now has the code word y'' = (1 0 0 0 1 1 0).
Because of the clever choice for G, Bob knows that xS = (1 0 0 0),
and he can now obtain x by multiplying by the matrix

S−1=1 1 0 1
1 1 0 0
0 1 1 1
1 0 0 1


obtaining x = (1 0 0 0)S-1 = (1 1 0 1).

Drawbacks
There are three major concerns with the McEliece cryptosystem.

1. The size of the public key (G') is quite large. Using the Goppa
code with parameters suggested by McEliece, the public key would
consist of 219 bits. This will certainly cause implementation
problems.

2. The encrypted message is much longer than the plaintext message.
This increase of the bandwidth makes the system more prone to
transmission errors.

3. The cryptosystem can not be used for authentication or signature
schemes because the encryption algorithm is not one-to-one and the
total algorithm is truly asymmetric (encryption and decryption do
not commute).

Security

The McEliece cryptosystem is considered to be fairly
secure. However, in 1986 Rao and Nam proposed a variant
of the system using only one matrix to disguise the problem
and the following year Struik and Tilburg showed how to
break the Rao-Nam system.

Goppa Codes
Although we will not describe the Goppa Codes here, we will
present a few facts about them.

For each irreducible polynomial of degree t over GF(2m) there
corresponds a binary, irreducible Goppa Code of length n = 2m,
dimension k ≥ n-tm and minimum distance d ≥ 2t+1. A fast
decoding algorithm, with running time nt, exists. Goppa Codes are
easily set up once the irreducible polynomial is found. This is not
difficult since there are about 2mt/t irreducible polynomials of degree
t over GF(2m). So, a random polynomial of degree t over GF(2m) will
be irreducible with probability 1/t. Since there is a fast algorithm for
testing irreduciblity, one can find one quickly by simply guessing
and testing.

