
Intro to Coding Theory



In the beginning ...
     Coding theory originated with the advent of computers. Early 
computers were huge mechanical monsters whose reliability was 
low compared to the computers of today. Based, as they were, on 
banks of mechanical relays, if a single relay failed to close the 
entire calculation was in error. The  engineers of the day devised 
ways to detect faulty relays so that they could be replaced. While 
R.W. Hamming was working for Bell Labs, out of frustration
with the behemoth he was working with, the thought occurred that 
if the  machine was capable of knowing it was in error, wasn't it 
also possible for the machine to correct that error. Setting to work 
on this problem Hamming devised a way of encoding information 
so that if an error was detected it  could also be corrected. Based in 
part on this work, Claude Shannon developed the theoretical 
framework for the science of coding theory.



The Coding Idea
     What we have called Coding Theory, should more properly be 
called the Theory of Error-Correcting Codes, since there is another 
aspect of Coding Theory which is older and deals with the creation 
and decoding of secret messages. This field is called Cryptography 
and we will not be interested in it. Rather, the problem that we wish 
to address deals with the difficulties inherent with the transmission 
of messages. More particularly, suppose that we wished to transmit 
a message and knew that in the process of transmission there would 
be some altering of the message, due to weak signals, sporadic 
electrical bursts and other naturally occurring noise that creeps into 
the transmission medium. The problem is to insure that the 
intended message is obtainable from whatever is actually received.



The Repeat Code
One simple approach to this problem is what is called a repeat code. 
For instance, if we wanted to send the message BAD NEWS, we 
could repeat each letter a certain number of times and send,
say,
 BBBBBAAAAADDDDD     NNNNNEEEEEWWWWWSSSSS.

 Even if a number of these letters got garbled in transmission, the 
intended message could be recovered from a received message that 
might look like 
BBBEBFAAAADGDDD  .  MNNNTEEEEEWWWSWRRSSS,

by a process called majority decoding, which in this case would 
mean that for each block of 5 letters the intended letter is the one  
which appears most frequently in the block.



Probability
The problem with this approach is economical, the repeat code is not 
very efficient. The increased length of the transmitted code, and thus the 
increased time and energy required to transmit it, is necessary in order to 
be able to decode the message properly, but how efficiently a coding 
procedure uses this increase depends upon the coding  scheme. Suppose,
in our example, that the probability that a letter is garbled in 
transmission is p = 0.05 and so q = 1 - p = 0.95 is the probability that a 
letter is correctly received. Without any coding, the probability of our 8 
letter (spaces included) message being correctly received is 
                               q8 = (.95)8 =  0.66.

(In this calculation we are assuming that the error in transmitting a single 
symbol is independent of which position the symbol is in. This is a 
common simplifying assumption ... which may not be appropriate in real 
world situations.)



Probability
Using the repeat code, the probability of correctly decoding a given letter 
from a block of 5 symbols is 
                                    q5 + 5q4p + 10q3p2 
since there are three ways to decode correctly – 1) all the symbols are 
correct, 2) one symbol is incorrect (5 ways this can happen) or 3) two 
symbols are incorrect (10 ways this can happen) [notice that these are 
just terms in the expansion of (q+p)5]. So we obtain
                    (.95)5 + 5(.95)4(.05) + 10(.95)3(.05)2 = 0.9988 
and thus the probability of getting the correct eight letter message after 
decoding is (0.9988)8 = 0.990, clearly a great increase over the non-
coded message ( = 0.66), but this 1% probability of getting the wrong 
message might not be acceptable for certain applications.



Terminology
To increase the probability of decoding the correct message with 
this type of code we would have to increase the number of repeats 
- a fix which may not be desirable or even possible in certain 
situations. However, as we shall see, other coding schemes could 
increase the probability to 0.9999 without increasing the length of 
the coded message.

     Before leaving the repeat codes to look at other coding 
schemes, let us introduce some terminology. Each block of 
repeated symbols is called a code word, i.e., a code word is what
is transmitted in place of one piece of information in the original 
message. The set of all code words is called a code. If all the code 
words in a code have the same length, then the code is called a 
block code. The repeat codes are block codes.



Detection and Correction

One feature that  a useful code must have is the ability to detect 
errors. The repeat code with code words having length 5 can
always detect from 1 to 4 errors made in the transmission of a code 
word, since any 5 letter word composed of more than one letter is 
not a code word. However, it is possible for 5 errors to go  
undetected (how?). We would say that this code is 4-error 
detecting. Another feature is the ability to correct errors, i.e., being 
able to decode the correct information from the error riddled 
received words. The repeat code we are dealing with can always 
correct 1 or 2 errors, but may decode a word with 3 or more errors 
incorrectly (how?), so it is a 2-error correcting code.



A Single Error Correcting Code
Before we look at the general theory of error correcting codes, let's 
consider another simple example. This is the simplest code that 
Hamming devised in his 1947 paper, Self-Correcting Codes – Case 
20878, Memorandum 1130-RWH-MFW, Bell Telephone 
Laboratories. [The first paper on error correcting codes]

The information that is to be encoded is a collection of binary 
strings of length t2. The code words will be binary strings of length 
(t+1)2, so 2t+1 check digits will be added to the information data.
To compute the check digits, arrange the data into a t×t array, add a 
mod 2 check sum digit to each row and column (including one for 
the row and column of check sums). The code word is the string 
obtained by writing out the rows of the extended array.



A Single Error Correcting Code
As a small example, consider the t = 3 case. We would code up the 
data 011010111 by
                                  0 1 1
                                  0 1 0
                                  1 1 1

Calculate the check digits, 

 and produce the codeword   0110010111111100.

When a word is received, it is arranged in a 4 × 4 array, the row 
and column check sums are recalculated and compared with the 
entries in the last column and last row. Differences indicate the 
row and column of any single error, which can then be corrected!

           0
           1
           1
 1 1 0  0



A Single Error Correcting Code
Suppose that the codeword 0110010111111100 is sent, but the 
word 0110011111111100 is received. We decode this:
                            0 1 1 0
                            0 1 1 1
                            1 1 1 1
                            1 1 0 0

By recalculating the check sums, we locate the row and column of 
the error. Clearly, any single error in a data digit will change only 
its row and column checks and so will be located. If an error is 
spotted only in a row but not a column (or vice versa) the error has 
occurred in a check digit and so, can again be corrected.

               0
               0 ←
               1
               0
  1 1 1 0
        ↑



Distance

    Suppose that you knew that an English word was transmitted 
and you had received the word SHIP. If you suspected that some 
errors had occurred in  transmission, it would be impossible to 
determine what word was really transmitted - it could have been 
SKIP, SHOP, STOP, THIS, actually any four letter word. The 
problem here is that English words are in a sense "too close" to 
each other. What gives a code its error correcting ability is the fact 
that the code words are "far apart". We shall make this distance 
idea more precise.



Assumptions

     First of all we shall restrict our horizons and only consider block 
codes, so all codewords will have the same length. There are other 
types of codes, with variable length codewords, which are used in 
practice, but their underlying theory is quite different from that of  
the block codes. 

    Our second assumption is that the symbols used in our 
codewords will come from a finite alphabet Σ. Typically, Σ will just 
consist of the integers {0,1,...,k-1} when we want our alphabet to 
have size k, but there will be other alphabets used in our work. Note 
that unless otherwise specified, these numbers are only being used 
as symbols – they have no arithmetic properties.



Settings
A code with codewords of length n, made up from an alphabet Σ of 
size k,  is then just a subset of Σn = Σ × Σ ×…× Σ , that is the set of 
n-tuples with entries from Σ. Since the actual alphabet is important 
(only its size) we will denote this “space” by
                                    V(n,k) :=  Σn

    The elements of V(n,k) are called words.
In those situations where we wish to use algebraic properties of the 
alphabet, we modify the notation by replacing the parameter k by 
the name of the algebraic structure we are using. Thus,
                                    V(n, ℤ

4
)

indicates that the n-tuples are made up from the elements of ℤ
4
 and 

that we can add n-tuples componentwise using the operations of ℤ
4
 

(namely, adding mod 4). [Technically, this space is known as a 
ℤ

4
 -module since the alphabet is a ring.]



Settings
The most important setting occurs when the alphabet is a finite 
field. To indicate this setting we will use the notation
                                          V[n,q]
implying that the alphabet is the finite field with q elements (as we 
shall see later, q must be a prime or power of a prime). In this case, 
V[n,q] is a vector space (with scalars from the finite field).

Many of the codes we will encounter, especially those that have 
been useful in computer science, have the vector space setting 
V[n,2]. These are often called binary codes since the alphabet is 
the binary field consisting of only two elements. Codes in V[n,3] 
are called ternary codes, and, in general, codes in V[n,q] are called 
q-ary codes.



Hamming Distance

     The Hamming distance between two words in V(n,k) is the 
number of places in which they differ.

So, for example, the words (0,0,1,1,1,0) and  (1,0,1,1,0,0) would 
have a Hamming distance of 2, since they differ only in the 1st and 
5th positions. In V(4,4), the words (0,1,2,3) and (1,1,2,2) also have 
distance 2. 

This Hamming distance is a metric on V(n,k), i.e., if  d(x,y) 
denotes the Hamming distance between words x and y, then d  
satisfies:
               1)  d(x,x) = 0
               2)  d(x,y) =  d(y,x), and
               3)  d(x,y) +  d(y,z) ≥ d(x,z).  (triangle inequality)



Hamming Distance

The first two of these properties are obvious, but the triangle 
inequality requires a little argument (this is a homework problem).

Since we will only deal with the Hamming distance (there are other 
metrics used in Coding Theory), we will generally omit the 
Hamming modifier and talk about the distance between words.



Minimum Distance 
     The minimum distance of a code C is the smallest distance 
between any pair of distinct codewords in C.  It is the minimum 
distance of a code that measures a code's error correcting 
capabilities. If the minimum distance of a code C is 2e + 1, then C
is a 2e-error detecting code since 2e or fewer errors in a codeword 
will not get to another codeword and is an e-error correcting code, 
since if e or fewer errors are made in a codeword, the resulting 
word is closer to the original codeword than it is to any other 
codeword and so can be correctly decoded (maximum-likelihood 
decoding).

   In the 5-repeat code of V(5,4) (codewords: 00000, 11111, 22222, 
and 33333) the minimum distance is 5. The code detects 4 or fewer 
errors and corrects 2 or fewer errors as we have seen.



 Weight of a Word
     We always assume that 0 is one of the symbols in our alphabet.

     The weight of a word is the number of non-zero components in 
the word. Alternatively, the weight is the distance of the word from 
the zero word.   

   In V(6,6) the word (0,1,3,0,1,5) has weight 4.

    When we are working with an alphabet in which one can add and 
subtract then there is a relationship between distance and weight,
                                d(x,y) = wt (x – y),
since whenever a component of x and y differ, the corresponding 
component of x – y will not be 0. 



(n, M, d) – Codes

Let C be a code in V(n,k). If C has M codewords and minimum 
distance d, we sometimes refer to it as an (n,M,d)-code. 

For fixed n, the parameters M and d work against one another - the 
bigger M, the smaller d and vice versa. This is unfortunate since 
for practical reasons we desire a large number of codewords with 
high error correcting capability (large M and large d). The search 
for “good” codes always involves some compromise between 
these parameters.



Covering Radius
Since V(n,k) has a metric defined on it, it makes sense to talk about 
spheres centered at a word with a given radius. Thus,
                         S

r
(x) = {y ∈ V(n,k) | d(x,y) ≤ r } 

is the sphere of radius r centered at x. 

The covering radius of a code C is the smallest radius s so that

V n , k  ⊆∪x∈C S s x
i.e., every word of the space is contained in some (at least one) 
sphere of radius s centered at a codeword.



Packing Radius
The packing radius of a code C is the largest radius t so that the 
spheres of radius t centered at the code words are disjoint. 

S t  x∩S t  y =∅ ∀ x≠ y∈C
Clearly, t ≤ s. When t = s, we say that C is a perfect code. While 
perfect codes are very efficient codes, they are very rare – most 
codes are not perfect.



Covering and Packing

Covering Radius

Packing Radius



Example
Consider the 5-repeat code in V(5,3). There are just 3 codewords,
00000, 11111, and 22222. A word such as 01221 is at distance 4 
from 00000, and distance 3 from both 11111 and 22222. The 
distance of a word x from a code word is just 5 - (# symbols in 
common with the codeword). Since there are just 3 symbols and 5 
positions, every word must have at least one repeated symbol, and 
so distance at most 3 from some codeword. Spheres of radius 3 
around the codewords will therefore contain all of V(5,3). This 
means that s ≤ 3. The example of 01221 shows that if s = 2 this 
word would not be contained in any sphere, thus the covering 
radius s = 3. This same example shows that spheres of radius 3 are 
not disjoint, so t < 3. Two spheres of radius 2 must be disjoint, 
since a word in both would have 3 symbols in common with both 
codewords →← So, the packing radius t = 2.



Sphere Packing Bound
        We can count the number of words in a sphere of radius e in 
V(n,q) and obtain:

M ∑
i=0

e

n
i q−1i≤ qn

∣S e  x ∣ = ∑
i=0

e

n
i q−1i .

To count the number of words at distance i from the word x, we 
first select which i positions will be different and then in each of 
these positions we select an element of the alphabet different from 
the one in that position in x (there are q-1 choices per position).

If C is an (n,M,d)-code in V(n,q) and the spheres of radius e 
centered at the codewords are disjoint, we obtain the sphere 
packing bound – since V(n,q) contains qn words:



Sphere Packing Bound
The minimum distance d of a perfect code must be odd. If it were 
even, there would be words at an equal distance from two code 
words and spheres around those codewords could not be disjoint if 
they had to contain these words. So, d = 2e + 1 and it is easy to see 
that for a perfect code t = s = e. Furthermore, 

Proposition 3 : An (n,M,d)-code in V(n,q) is perfect if and only if 
d = 2e + 1 and

M ∑
i=0

e

n
i q−1i=qn .

Pf: If C is perfect the spheres of radius e centered at codewords are 
disjoint (e = t) and all words are contained in them (e = s). On the 
other hand, if d = 2e + 1, we have e ≤ t and the counting equality 
shows that s ≤ e. Thus, s ≤ e ≤ t, which implies s = e = t.         ❑ 



Equivalent Codes
The capabilities of a code are determined by the number of and the 
distances between the codewords. Thus, two codes should be 
considered equivalent if these statistics are the same. 
    There are two operations on the words of V(n,k) which, while 
changing the words, do preserve the distances between any set of 
words. The first is an arbitrary permutation of the coordinate 
positions applied to all words of V(n,k). This doesn't change 
distances since the distance is determined only by the number of 
positions in which the entries differ and not on where these occur. 
The second operation applies independently to any coordinate 
position. Since it is only whether or not the symbols in this position 
differ, and not what the symbols are that matter, any arbitrary 
permutation of the alphabet can be applied in this coordinate 
position.



Equivalent Codes
Formally, we say that two codes in V(n,k) are equivalent if one 
can be obtained from the other by a series of the two operations:
  1) arbitrary permutations of the coordinate positions of all words,
  2) arbitrary permutations of the symbols independently applied 
to the symbols in any set of coordinate positions. 

The following codes (the 3 words in a column) are equivalent in 
V(4,4):
             0123                0213             0000
             1120                1210             1002
             0333                0333             0120  
Note that in all cases the distance between the first two codewords 
is 2, as is the distance between the first and third, and 4 between 
the second and third.



Equivalent Codes

Note that as a consequence of the notion of equivalence, 
given a code C in V(n,k), there will always exist an 
equivalent code to C which contains the zero word (in 
fact, an equivalent code to C which contains any word 
you may like). 



Linear Codes

     In the V[n,q] setting, an important class of codes are the linear 
codes, these codes are the ones whose code words form a sub-vector 
space of V[n,q]. If the subspace of V[n,q] is k dimensional then we 
talk about the subspace as an [n,k]-code. (Note that the square 
brackets indicate a linear code).

    In the V[n,q] setting, the terms “word” and “vector” are 
interchangeable.

    Linear codes, because of their algebraic properties, are the most 
studied codes from a mathematical point of view. Our text (and 
many others) is devoted almost exclusively to linear codes.



Linear Codes
 
   There are several consequences of a code being linear.
   1) The sum or difference of two codewords is another codeword.
   2) The zero vector is always a codeword.
   3) The number of codewords in an [n,k]-code C of V[n,q] is qk.
        There are k vectors in a basis of C. Every codeword is 
expressible as a unique linear combination of basis vectors. Thus, to 
count the number of codewords, we just have to count the number 
of linear combinations. There are q choices for a scalar multiple of 
each basis vector and therefore qk linear combinations in total. 

    Since the number of codewords of a linear code is determined by 
the dimension of the subspace, the (n, M, d) notation for general 
codes is generally replaced by [n, k, d] for linear codes.



Linear Codes
     In general, finding the minimum distance of a code requires 
comparing every pair of distinct elements. For a linear code 
however this is not necessary.

Proposition 4: In a linear code the minimum distance is equal to the 
minimal weight among all non-zero code words.

Proof: Let x and y be code words in the code C, then  x - y is in  C 
since C is linear. We then have  d(x,y) =  d(x-y,0) which is the 
weight of x-y.                                                                         ❑   

(Notice that this proposition is actually valid in a larger class of 
codes ... one only requires that the alphabet permits algebraic 
manipulation and that the code is “closed” under subtraction.)



Generator Matrix
  We shall now look at two ways of describing a linear code C.

 The first is given by a generator matrix G which has as its rows a 
set of basis vectors of the linear subspace C. If C is an [n,k]-code, 
then G will be a k × n matrix.

  The code C is the set of all linear combinations of the rows of G, 
or as we usually call it, the row space of G. 

  Given the matrix G, the code C is obtained by multiplying G on 
the left by all possible 1 × k row vectors (this gives all possible 
linear combinations):

                        C = {xG | x ∈ V[k,q] }.



Equivalence of Linear Codes

The general concept of equivalence of codes does not necessarily 
preserve the property of a code being linear. That is, linear codes 
may be equivalent to non-linear codes. In order to preserve the 
linear property we must limit the types of operations allowed when 
considering equivalence.

Two linear codes are equivalent if one can be obtained from the 
other by a series of operations of the following two types:
  1) an arbitrary permutation of the coordinate positions, and
  2) in any coordinate position, multiplication by any non-zero 
scalar.

(Note that this second operation preserves the 0 entries.)



Generator Matrix

   Due to this definition of equivalence, elementary row and 
column operations on the generator matrix G of a linear code 
produce a matrix for an equivalent code. 

Since G has rank k, by elementary row operations we can 
transform G to a matrix with a special form. Thus, we see that
every linear code has an equivalent linear code with a generator 
matrix of the form  G = [I

k
 P], where I

k
  is the k × k  identity matrix 

and P is a k × n-k matrix. We call this the standard form of G.



Example
Let C be the [7,4]-code of V[7,2] generated by the rows of G (in 
standard form):
                                        1  0  0  0  1  1  0 
                                 G = 0  1  0  0  0  1  1 
                                        0  0  1  0  1  1  1
                                        0  0  0  1  1  0  1

We get the 16 code words by multiplying G on the left by the 16 
different binary row vectors of length 4. 

     So for instance we get code words:
                      (1,1,0,0) G = (1,1,0,0,1,0,1)
                      (1,0,1,1) G = (1,0,1,1,1,0,0)
                      (0,0,0,0) G = (0,0,0,0,0,0,0).



Example
The list of all the codewords is:

0 0 0 0 0 0 0      1 1 0 1 0 0 0      0 1 1 0 1 0 0     0 0 1 1 0 1 0
0 0 0 1 1 0 1      1 0 0 0 1 1 0      0 1 0 0 0 1 1     1 0 1 0 0 0 1
1 1 1 1 1 1 1      0 0 1 0 1 1 1      1 0 0 1 0 1 1     1 1 0 0 1 0 1
1 1 1 0 0 1 0      0 1 1 1 0 0 1      1 0 1 1 1 0 0     0 1 0 1 1 1 0 

Notice that there are 7 codewords of weight 3, 7 of weight 4, 1 of 
weight 7 and 1 of weight 0. Since this is a linear code, the minimum 
distance of this code is 3 and so it is a 1-error correcting code.

This [7,4,3] code is called the [7,4] – Hamming Code. It is one of a 
series of codes due to Hamming and Golay.



Parity Check Matrix
     We now come to the second description of a linear code C. 

   The orthogonal complement of C, i.e. the set of all vectors which 
are orthogonal to every vector in C [orthogonal = standard dot 
product is 0], is a subspace and thus another linear code called the 
dual code of C, and denoted by C⊥. If C is an [n,k]-code then C⊥ is 
an [n, n-k] code.

A generator matrix for C⊥ is called a parity check matrix for C. If C 
is an [n,k]-code then a parity check matrix for C will be an n-k × n 
matrix. If H is a parity check matrix for C, we can recover the 
vectors of C from H because they must be orthogonal to every row 
of H (basis vectors of C⊥).



Parity Check Matrix

Thus the code C is given by a parity check matrix H as follows:
 
                         C  = { x ∈ V[n,q] |  HxT  = 0 }

since the entries of this product are just the dot products of x with 
the rows of H.



Example
     A parity check matrix for the [7,4]-Hamming code is given by:

                                      1  0  1  1  1  0  0
                           H  =    1  1  1  0  0  1  0
                                      0  1  1  1  0  0  1

Recall from the earlier example that 0001101 is a codeword and 
notice that

1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1

0
0
0
1
1
0
1
 = 0

0
0.



Parity Check Matrices
Theorem 1 :  Let H be a parity-check matrix for an  [n,k]-code C 
in V[n,F]. Then every set of  s-1 columns of H are linearly 
independent if and only if C has minimum distance at least s.

Proof: First assume that every set of s-1 columns of H are linearly 
independent over F. Let c = (c

1
 c

2
 ... c

n
) be a non-zero codeword 

and let h
1
, h

2
, ... , h

n
 be the columns of H. Then since H is the parity 

check matrix, HcT = 0. This matrix-vector product may be written 
in the form

H cT=∑
i=1

n

ci hi=0 .

The weight of c, wt(c) is the number of non-zero components of c. 



Parity Check Matrices

If wt(c) ≤ s - 1, then we have a nontrivial linear combination of 
less than s columns of H which sums to 0. This is not possible 
by the hypothesis that every set of s - 1 or fewer columns of H 
are linearly independent. Therefore, wt(c) ≥ s, and since c is an 
arbitrary non-zero codeword of the linear code C it follows that 
the minimum non-zero weight of a codeword is ≥ s. So, since C 
is linear (Prop. 4), the minimum distance of C is ≥ s.

To prove the converse, assume that C  has minimum distance at 
least s. Suppose that some set of t < s columns of H are linearly 
dependent. Without loss of generality, we may assume that these 
columns are h

1
, h

2
, ..., h

t
. 



Parity Check Matrices
Then there exist scalars  λ

i
 in F, not all zero, such that

∑
i=1

t

i hi=0 .

Construct a vector c having  λ
i
 in position i,  1≤ i ≤ t, and 0's 

elsewhere. By construction, this c is a non-zero vector in C since 
HcT = 0. But wt(c) = t < s. This is a contradiction since by 
hypothesis, every non-zero codeword in C has weight at least s. 
We conclude that no s-1 columns of H are linearly dependent.   ■ 
 



Parity Check Matrices

It follows from the theorem that a linear code C with 
parity-check matrix H has minimum distance (exactly) d if 
and only if every set of d-1 columns of H are linearly
independent, and some set of d columns are linearly 
dependent. Hence this theorem could be used to determine 
the minimum distance of a linear code, given a parity-
check matrix.



Parity Check Matrices
It is also possible to use this theorem to construct single-error 
correcting codes (i.e., those with a minimum distance of 3). To 
construct such a code, we need only construct a matrix H such that 
no 2 or fewer columns are linearly dependent. The only way a single 
column can be linearly dependent is if it is the zero column. Suppose 
two non-zero columns h

i
 and h

j
 are linearly dependent. Then there 

exist non-zero scalars a ,b ∈ F such that
                              a h

i
 +  bh

j
 = 0.

This implies that
                               h

i
 = -a-1b h

j
,

meaning that h
i
 and h

j
 are scalar multiples of each other. Thus, if we 

construct H so that H contains no zero columns and no two columns 
of H are scalar multiples, then H will be the parity-check matrix for 
a linear code having distance at least 3.



Example
Over the field F = GF(3) = ℤ

3
 (integers mod 3), consider the matrix

H = 1 0 0 1 2
0 2 0 0 1
0 0 1 1 0.

The columns of H are non-zero and no column is a scalar multiple 
of any other column.

Hence, H is the parity-check matrix for a [5,2]-code in V[5,3] with 
minimum distance at least 3.



Converting Representations
When working with linear codes it is often desirable to be able to 
convert from the generator matrix to the parity-check matrix and 
vice-versa. This is easily done.

Theorem 2: If G = [I
k
 A] is the generator matrix (in standard form) 

for the [n,k]-code C, then H = [-AT I
n-k

] is the parity check matrix for 
C.

Proof: We must show that H is a generator matrix for C⊥.  Now GHT 
= I

k
 (-A) + A I

n-k
 = 0, implying that the rows of H are orthogonal to 

the rows of G, thus span(H) = {row space of H} is contained in  C⊥. 



Converting Representations
    Consider any x ∈ C⊥  where x = (x

1
 x

2
 ...x

n
) and let

y=x−∑
i=1

n−k

xik r i

x=∑
i=1

n−k

xik r i .

Hence, x ∈ span(H) and we have  C⊥ ⊆ span(H).  Thus, span(H) =  
C⊥  and so, H is a generator matrix of  C⊥ .                           ■       

where r
i
 is the ith row of H. Since x ∈ C⊥  and we have just proven 

that r
i
 ∈ C⊥,  1 ≤  i ≤  k, it follows that y ∈ C⊥. We now examine the 

structure of y. By construction, components k + 1 through n are 0, 
so y = (y

1
 y

2
 ... y

k
 0 0 ... 0 ). But since y ∈ C⊥,  GyT = 0, which 

implies that y
i
 = 0, 1 ≤ i ≤ k. Therefore, y = 0 and



Example (Cont.)
To look at the code we have previously constructed, it would be
convenient to have the generator matrix. Since H is the generator 
matrix for  C⊥ , if we apply the last theorem we can get the parity-
check matrix for C⊥  which is the generator matrix for C. To this end 
we perform row operations on H to put it into standard form H'.

H = 1 0 0 1 2
0 2 0 0 1
0 0 1 1 0  H '=1 0 0 1 2

0 1 0 0 2
0 0 1 1 0= I 3 A , so A=1 2

0 2
1 0.

G=−AT I 2=2 0 2 1 0
1 1 0 0 1.



Example (Cont.)
We can now take all linear combinations (over GF(3)) of the rows 
to write out the 9 codewords of C. With their weights they are

                               Codeword  Weight

                                  00000          0
                                  20210          3
                                  11001          3
                                  10120          3
                                  22002          3
                                  01211          4
                                  21121          5
                                  12212          5
                                  02122          4

And we see that we have indeed generated a code of minimum 
distance 3.

G= 2 0 2 1 0
1 1 0 0 1



Hamming Codes
 A Hamming Code of order r over GF(q) is an [n,k]-code where n = 
(qr-1)/(q-1) and k = n - r, with parity check matrix H

r
 an r × n matrix 

such that the columns of H
r
 are non-zero and no two columns are 

scalar multiples of each other.

Note that qr - 1 is the number of non-zero r-vectors over GF(q) and 
that q - 1 is the number of non-zero scalars, thus n is the maximum 
number of non-zero r-vectors no two of which are scalar multiples 
of each other. It follows immediately from Theorem 1 that the 
Hamming codes all have minimum distance exactly 3 and so are 1-
error correcting codes.



Hamming Codes are Perfect
 Since the number of codewords in a Hamming code is qk, a direct 
computation shows that sphere packing bound is met, so:

Theorem 3 : The Hamming codes of order r over GF(q) are 
perfect codes. 

Proof:  With M = qk, and d = 3 = 2e + 1, ie. e = 1 we have:

M ∑
i=0

e

n
i q−1i=qk 1nq−1=qk 1 qr−1

q−1
q−1=qkr=qn .



Example

The Hamming code of order r = 3 over GF(2) is given by the parity-
check matrix

H 3=1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 0 1 1 1.

This is the [7,4]-code with distance 3. Re-ordering the columns of 
H

3
 would define an equivalent Hamming code.



Example
The [13,10]-Hamming code of order 3 over GF(3) is given by the 
parity-check matrix

H 3=1 0 0 1 0 1 1 2 0 1 2 1 1
0 1 0 1 1 0 1 1 2 0 1 2 1
0 0 1 0 1 1 1 0 1 2 1 1 2.



Decoding
     The usefulness of an error-correcting code would be greatly 
diminished if the decoding procedure was very time consuming. 
While the concept of decoding, i.e., finding the nearest codeword to 
the received vector, is simple enough, the algorithms for carrying 
this out can vary tremendously in terms of time and memory 
requirements.

     Usually, the best (i.e., fastest) decoding algorithms are those 
designed for specific types of codes. We shall examine some 
algorithms which deal with the general class of linear codes and so, 
will not necessarily be the best for any particular code in this class.



Syndromes
When a codeword c is transmitted and vector r is received, the 
difference between the two is called the error vector e, 
i.e.  r = c + e. 

If H is a parity-check matrix for the linear code C, then 

                          HrT = H(c + e)T = HcT + HeT = HeT  

since HcT = 0 for any codeword. 

HrT is called the syndrome of r. 



Syndromes
If wt(e) ≤ 1 then the syndrome of r = HeT is just a scalar multiple of 
a column of H. This observation leads to a simple decoding 
algorithm for 1-error correcting linear codes. 

     First, calculate the syndrome of r. If the syndrome is 0, no error 
has occurred and r is a codeword.
     Otherwise, find the column of H which is a scalar multiple of the 
syndrome. 
      If no such column exists then more than one error has occurred 
and the code can not correct it. 
      If however, the syndrome is α times column j, say, then add the 
vector with -α in position j and 0's elsewhere to r. This corrects the 
error. 



Example
Let H=1 0 0 1 2

0 2 0 0 1
0 0 1 1 0                                             be the parity check matrix of a code C 

in V[5,3]. Now x = (1 0 1 2 0) is a code word since, 

1 0 0 1 2
0 2 0 0 1
0 0 1 1 01

0
1
2
0
=3

0
3=0

0
0.

If r = (1 0 1 1 0) is received when x is transmitted, then the 
syndrome of r is:

1 0 0 1 2
0 2 0 0 1
0 0 1 1 01

0
1
1
0
=2

0
2=21

0
1.

Correction: r + (0 0 0 -2 0) = (1 0 1 -1 0) = (1 0 1 2 0).



Hamming Decoding

This method can be improved for binary Hamming codes. The very 
simple decoding algorithm that results is called Hamming 
Decoding.

Rearranging the columns of the parity check matrix of a linear code 
gives the parity check matrix of an equivalent code. In the binary 
Hamming code of order r, the columns are all the non-zero binary 
vectors of length r. Each such column represents the binary form of 
an integer between 1 and n = 2r -1. We can arrange the columns of 
the parity check matrix so that the column in position i represents 
the integer i. Let H be the parity check matrix formed in this way.



Hamming Decoding

For example, the parity check matrix for the [7,4]-Hamming code 
would be written as:

H 3 '=1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1.

Here, the column (x,y,z)T represents the number 
                                     x(20) + y(21) + z(22).
If v is the received vector, calculate the syndrome HvT.  If at most 
one error has been made, the result is a vector of length r, either 
the zero vector or a column of H. When one error has been made 
the number represented by this column is the position in v which 
is in error – and since this is a binary code, we can correct it.



Hamming Decoding

0101010 is a codeword in the [7,4]-Hamming code. Suppose that 
we received the vector v = 0101110. We calculate:

H 3 ' vT=1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

0
1
0
1
1
1
0
 = 1

0
1.

The result represents the number 5, which is the position of the 
error.



Code Cosets
This procedure does not work for codes which are more than single 
error correcting. To deal with the more general situation, we 
introduce an equivalence relation on the vectors of V[n,q] with 
respect to the code C.

 We say that vectors x and y are equivalent with respect to C if and 
only if, x - y  ∈ C. This is an equivalence relation since, 
1)  x – x = 0 ∈ C for all x,
2)  if x – y ∈ C, then y – x = -(x-y) ∈ C since it is a scalar multiple 
of an element of C, and
3) if x-y ∈ C and y-z ∈ C then x-z = (x-y) + (y-z) ∈ C.

and the equivalence classes (which form a partition of V[n,q]) are 
called the cosets of C. 



Code Cosets
An alternative way of viewing the cosets of C is to note that a coset 
consists of all the vectors that have the same syndrome. Indeed, if
 x - y ∈ C, then  x - y = c  for some c ∈ C.  Thus, x = c + y and

                    HxT = H(c + y)T = HcT + HyT = HyT.

Furthermore, if two vectors have the same syndrome then they are 
equivalent. If HxT = HyT,

                        0 = HxT - HyT = H(x – y)T,

and so,  x - y is ∈ C.



Example
The table below lists the cosets of the [5,2]-code of V[5,2] whose 
generator matrix is given by, 

The cosets are the rows in the table, with the first row being the 
code C (which is also a coset).

                00000   10101   01110   11011
                00001   10100   01111   11010
                00010   10111   01100   11001
                00100   10001   01010   11111
                01000   11101   00110   10011
                10000   00101   11110   01011
                11000   01101   10110   00011
                10010   00111   11100   01001
      

When the vectors of 
V[n,q] are arranged 
by cosets in this way 
it is called a standard 
array for the code

G=1 0 1 0 1
0 1 1 1 0



Example
The parity-check matrix for this code is

and the syndromes for each row are given below

                                                                           000
                                                                           001
                                                                           010
                                                                           100
                                                                           110
                                                                           101
                                                                           011
                                                                           111

H=1 1 1 0 0
0 1 0 1 0
1 0 0 0 1

                00000   10101   01110   11011
                00001   10100   01111   11010
                00010   10111   01100   11001
                00100   10001   01010   11111
                01000   11101   00110   10011
                10000   00101   11110   01011
                11000   01101   10110   00011
                10010   00111   11100   01001



Syndrome Decoding
In each coset we can select a vector of minimum weight (when 
there is a choice we can make the selection arbitrarily), this vector 
is called a coset leader. In the previous example, the coset
leaders were written in the first column of the standard array. We 
can use the coset leaders in a decoding algorithm. 

When a vector r is received, we find the coset that it is contained in
(via the syndrome calculation) and then subtract the coset leader for 
that coset to obtain a codeword. This procedure is called syndrome 
decoding. That syndrome decoding gives the correct error 
correction is the content of the next theorem.



Syndrome Decoding
Theorem 4 : Let C be an [n,k]-code in V[n,q] with codewords cj, 
0 ≤ j ≤ qk - 1. Let li,  0 ≤ i ≤ qn-k - 1 be a set of coset leaders for the 
cosets of this code. If r = li + ch then
                d(r,ch ) ≤  d(r,cj ) for all j,  0 ≤ j ≤ qk - 1.

Proof:  Expressing these distances in terms of weights we have, 
             d(r,ch) =  d(li + ch, ch) = wt(li + ch - ch) = wt(li) and
                 d(r,cj) =  d(li + ch, cj) = wt(li + ch - cj).
But li + ch - cj is in the same coset as li, and the coset leader has 
minimal weight.                                                                ■



Syndrome Decoding
Note that if the coset leader is unique then c

h
 is the closest 

codeword (if it is not unique, then c
h
 is still as close as any other 

codeword). We have the following result about uniqueness.

Theorem 5 : Let C be a linear code with minimum distance d. If x is 
any vector such that

wt  x  [ d−1
2 ] ,

then x is a unique element of minimum weight in its coset of C and 
hence is always a coset leader.



Syndrome Decoding

Proof: Suppose that there exists another vector y with the same 
weight as x in x's coset.
       Since x and y are in the same coset,  x - y ∈  C, but

wt  x− y   wt  xwt  y   [ d−1
2 ][ d−1

2 ] d−1.

This contradicts the minimum distance of the code, unless x - y is 
the zero vector, i.e. x = y.                                                 ■



Example
In the previous example, the [5,2]-code had minimum distance 3 
(the minimum non-zero weight of a codeword) and so the above 
theorem states that the zero vector and all vectors of weight 1 will 
be unique coset leaders as can easily be verified from the standard
array.
                00000   10101   01110   11011
                00001   10100   01111   11010
                00010   10111   01100   11001
                00100   10001   01010   11111
                01000   11101   00110   10011
                10000   00101   11110   01011
                11000   01101   10110   00011
                10010   00111   11100   01001


