Theme Feature

Sarita V. Adve
Rice University

Kourosh Gharachorloo
Digital Equipment Corporation

'The memory consistency
model of a system
affects performance,
programmability, and
portability. This article
describes several models
in an easy to
understand way.

Computer

‘Shared NMemory

onsistency
lodels:
Tutorial

he shared memory programming model has several advantages

over the message passing model. In particular, it simplifies data

partitioning and dynamic load distribution. Shared memory sys-
tems are therefore gaining wide acceptance for both technical and com-
mercial computing.

To write correct and efficient shared memory programs, programmers
need a precise notion of shared memory semantics. For example, in the
program in Figure 1 (a fragment from a program in the Splash applica-
tion suite), processor P1 repeatedly updates a data field in a new task
record and then inserts the record into a task queue. When no tasks are
left, P1 updates a pointer, Head, to point to the first record in the task
queue. Meanwhile, the other processors wait for Head to have a non-null
value, dequeue the task pointed to by Head in a critical section, and read
the data in the dequeued task. To ensure correct execution, a program-
mer expects that the data value read should be the same as that written
by P1. However, in many commercial shared memory systerns, the proces-
sors may observe an older value, causing unexpected behavior.

The memory consistency model of a shared memory multiprocessor for-
mally specifies how the memory system will appear to the programmer.
Essentially, a memory consistency model restricts the values that a read
can return. Intuitively, a read should return the value of the “last” write to
the same memory location. In uniprocessors, “last” is precisely defined by
the sequential order specified by the program, called the program order.
This is not the case in multiprocessors. For example, in Figure 1 the write
and read of Data are not related by program order because they reside
on two different processors.

The uniprocessor model, however, can be extended to apply to multi-
processors in a natural way. The resulting model is called sequential con-
sistency. Informally, sequential consistency requires that all memory
operations appear to execute one at a time and that all operations of a sin-
gle processor appear to execute in the order described by that processor’s
program. For Figure 1, this model ensures that the reads of the data field
will return the new values written by processor P1. Sequential consistency
provides a simple, intuitive programming model. Howevet, it disallows
many uniprocessor hardware and compiler optimizations. For this rea-
son, many relaxed consistency models have been proposed, several of which
are supported by commercial architectures.

The memory consistency model is an interface between the pro-
grammer and the system, so it influences not only how parallel programs
are written but virtually every aspect of parallel hardware and software
design. A memory consistency model specification is required at every
interface between the programmer and the system, including the inter-
faces at the machine-code and high-level language levels. In particular,
the high-level language specification affects high-level language pro-
grammers, compiler and other software writers who convert high-level

0018-9162/96/$5.00 © 1996 IEEE

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 23, 2009 at 03:48 from IEEE Xplore. Restrictions apply.

Figure 1. lilustration of the need for a memory con-
sistency model.

code into machine code, and the designers of hardware
that executes the code. At each level, the memory con-
sistency model affects both programmability and perfor-
mance. Furthermore, due to a lack of consensus on a
single model, portability can be affected when moving
software across systems supporting different models.

Unfortunately, the vast literature that describes consis-
tency models uses nonuniform and complex terminology
to describe the large variety of models. This makes it dif-
ficult to understand the often subtle but important differ-
ences among models and leads to several misconceptions,
some of which are listed in the “Myths about memory con-
sistency models” sidebar.

In this article, we aim to describe memory consistency
models in a way that most computer professionals would
understand. This isimportant if the performance-enhanc-
ing features being incorporated by system designers are
to be correctly and widely used by programmers. Our
focus is consistency models proposed for hardware-based
shared memory systems. Most of these models emphasize
the system optimizations they support, and we retain this
system-centric emphasis in this article. We also describe an
alternative, programmer-centric view of relaxed consis-
tency models that describes them in terms of program
behavior, not system optimizations. A more formal treat-
ment is covered in our other work.?

UNIPROCESSOR MEEMORY
CONSISTENCY

Most high-level uniprocessor languages present simple
sequential-memory semantics, which allow the program-
mer to assume that all memory operations will occur one
at a time in program order. Fortunately, this illusion of
sequentiality can be supported efficiently by simply ensur-

ing that two operations are executed in program order if -~

they are to the same location or if one controls the execu-
tion of the other. The compiler or the hardware can freely
reorder other operations, enabling several optimizations.
Overall, the sequential-memory semantics of a uniproces-
sor provide a simple and intuitive model and yet allow a
wide range of efficient system designs.

UNDERSTANDING SEQUENTIA
CONSISTENCY '

The most commonly assumed memory consistency
model for shared memory multiprocessors is sequential con-
sistency, which gives programmers a simple view of the sys-

tem. A multiprocessor system is sequentially consistent “if
the result of any execution is the same as if the operations
of all the processors were executed in some sequential order,
and the operations of each individual processor appear in
this sequence in the order specified by its program.”™
There are two requirements for sequential consistency:

* maintaining program order arong operations from
a single processor, and

* maintaining a single sequential order among all oper-
atiomns.

December 1996

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 23, 2009 at 03:48 from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 23, 2009 at 03:48 from IEEE Xplore. Restrictions apply.

