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The memory consistency 

model of a system 

affects performance, 

programmability, and 

portability. This article 

describes several models 

in an easy to 

understand way. 

Computer 

CY 

he shared memory programming model has several advantages 
over the message passing model. In particular, it simplifies data 
partitioning and dynamic load distribution. Shared memory sys- 

tems are therefore gaining wide acceptance for both technical and com- 
mercial computing. 

To write correct and efficient shared memory programs, programmers 
need a precise notion of shared memory semantics. For example, in the 
program in Figure 1 (a fragment from a program in the Splash applica- 
tion suite), processor P1 repeatedly updates a data field in a new task 
record and then inserts the record into a task queue. When no tasks are 
left, P 1  updates a pointer, Head, to point to the first record in the task 
queue. Meanwhile, the other processors wait for Head to have a non-null 
value, dequeue the task pointed to by Head in a critical section, and read 
the data in the dequeued task. To ensure correct execution, a program- 
mer expects that the data value read should be the same as that written 
by P1. However, in many commercial shared memory systems, the proces- 
sors may observe an older value, causing unexpected behavior. 

The memory consistency model of a shared memory multiprocessor for- 
mally specifies how the memory system will appear to the programmer. 
Essentially, a memory consistency model restricts the values that a read 
can return. Intuitively, a read should return the value of the “last” write to 
the same memory location. In uniprocessors, “last” is precisely defined by 
the sequential order specified by the program, called the program order. 
This is not the case in multiprocessors. For example, in Figure 1 the write 
and read of Data are not related by program order because they reside 
on two different processors. 

The uniprocessor model, however, can be extended to apply to multi- 
processors in a natural way. The resulting model is called sequential con- 
sistency. Informally, sequential consistency requires that all memory 
operations appear to execute one at a time and that all operations of a sin- 
gle processor appear to execute in the order described by that processor’s 
program. For Figure 1, this model ensures that the reads of the data field 
will return the new values written by processor P1. Sequenual consistency 
provides a simple, intuitive programming model. However, it disallows 
many uniprocessor hardware and compiler optimizations. For this rea- 
son, many relaxed consistency models have been proposed, several of which 
are supported by commercial architectures. 

The memory consistency model is an interface between the pro- 
grammer and the system, so it influences not only how parallel programs 
are written but virtually every aspect of parallel hardware and software 
design. A memory consistency model specification is required at every 
interface between the programmer and the system, including the inter- 
faces at the machine-code and high-level language levels. In particular, 
the high-level language specification affects high-level language pro- 
grammers, compiler and other software writers who convert high-level 
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Initially all pointers = null, all integers = 0. 
P1 P2, P3, ..., Pn 
while (there are more tasks) 

Task = CetFromFreeListO; 
Task -+ Data = ...; 
insert Task in task queue 

1 
Head = head of task queue; 

while (MyTask == null) { 
Begin critical Section 
if (Head != null) { 

MyTask = Head; 
Head = Head -+ Next; 

} 
End Critical Section 

I 
... = MyTask -+ Data; 

Figure 1. Illustration of the need for a memory con- 
sistency model. 

code into machine code, and the designers of hardware 
that executes the code. At each level, the memory con- 
sistency model affects both programmability andperfor- 
mance. Furthermore, due to a lack of consensus on a 
single model, portability can be affected when moving 
software across systems supporting different models. 

Unfortunately, the vast literature that describes consis- 
tency models uses nonuniform and complex terminology 
to describe the large variety of models. This makes it dif- 
ficult to understand the often subtle but important differ- 
ences among models and leads to several misconceptions, 
some of which are listed in the “Myths about memory con- 
sistency models” sidebar. 

In this article, we aim to describe memory consistency 
models in a way that most computer professionals would 
understand. This is important if the performance-enhanc- 
ing features being incorporated by system designers are 
to be correctly and widely used by programmers. Our 
focus is consistency models proposed for hardware-based 
shared memory systems. Most of these models emphasize 
the system optimizations they support, and we retain this 
system-centric emphasis in this article. We also describe an 
alternative, programmer-centric view of relaxed consis- 
tency models that describes them in terms of program 
behavior, not system optimizations. A more formal treat- 
ment is covered in our other work.’ 

UNIPROCESSOR MEMORY 
CONSISTENCY 

Most high-level uniprocessor languages present simple 
sequential-memory semantics, which allow the program- 
mer to assume that all memory operations will occur one 
at a time in program order. Fortunately, this illusion of 
sequentiality can be supported efficiently bysimplyensur- 
ing that two operations are executed in program order if 
they are to the same location or if one controls the execu- 
tion of the other. The compiler or the hardware can freely 
reorder other operations, enabling several optimizations. 
Overall, the sequential-memory semantics of a uniproces- 
sor provide a simple and intuitive model and yet allow a 
wide range of efficient system designs. 

UNDERSTANDING SEQUENTIAL 
CONSISTENCY 

The most commonly assumed memory consistency 
model for shared memory multiprocessors is sequential con- 
sistency, which gives programmers a simple view of the sys- 

tem. A multiprocessor system is sequentially consistent “if 
the result of any execution is the sarne as if the operations 
of all the processors were executed in some sequential order, 
and the operations of each individual processor appear in 
this sequence in the order specified by its program.”4 

There are two requirements for sequential consistency: 

maintaining program order arnong operations from 

maintaining a single sequential order among all oper- 
a single processor, and 

ations. 

December 1996 

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 23, 2009 at 03:48 from IEEE Xplore.  Restrictions apply. 



The second requirement makes a memory operation 
appear to execute atomically (instantaneously) with 
respect to other memory operations. A sequentially con- 
sistent system can be thought of as consisting of a single 
global memory connected to all the processors by a central 
switch, At any time step, the switch connects memory to 
an arbitrary processor, which may then issue a memory 
operation. Each processor issues memory operations in 
program order, and the switch provides the global serial- 
ization among all memory operations. 

Figure 2a illustrates the first requirement for program 
order. The figure depicts Dekker’s algorithm for critical sec- 
tions. It involves two flag variables initialized to 0. When 
processor P1 attempts to enter the critical section, it 
updates Flag1 to 1, and checks the value of Flag2. The value 
0 for Flag2 indicates that processor P2 has not yet tried to 
enter the critical section, so it is safe for P l  to enter. The 
algorithm assumes that if Pl’s read returns 0, then Pl’s 
write occurred before P2’swrite and read. P2 will read the 
flag and return 1, which will prohibit it from also entering 
the critical section. Sequential consistency ensures this by 
maintaining program order. 

Figure 2b illustrates the atomicity requirement. In this 
case, three processors share variables A and B, which are 
initialized to 0. Suppose P2 returns 1 when it reads Aand 
then writes to B, and suppose P3 returns 1 when it reads 
B. Atomicity allows us to assume that Pl’s write is seen by 
the entire system at the same time. Since P3 sees P2’s write 
to B after P2 sees Pl’s write to A, it follows that P3 is guar- 
anteed to see Pl’s write and return 1 when it reads A. 

IMPLEMENTING SEQUENTIAL 
CONSISTENCY 

In this section we explain how to practically realize 
sequential consistency in a multiprocessor system. We will 
see that unlike uniprocessors, preserving onlyper-proces- 
sor data and control dependencies is insufficient. We first 
focus on how sequential consistency interacts with com- 
mon hardware optimizations and then briefly describe 
compiler optimizations. To separate the issues of program 
order and atomicity, we begin with implementations for 
architectures without caches and then discuss the effects 
of caching shared data. 

Figure 2. Examples for sequential consistency. 

Computer 

Architectures without caches 
The key issue in supporting sequential consistency in 

systems without caches is program order. To illustrate the 
interactions that arise in such systems, we will use three 
typical hardware optimizations, shown in Figure 3. The 
notations tl,  t2, and so on in the figure indicate the order 
in which the corresponding memory operations execute at 
memory. 

WRITE BUFFERS WITH READ BYPASSING. The opti- 
mization depicted in Figure 3a shows the importance of 
maintaining program order between a write and a fol- 
lowing read, even if there is no data or control dependence 
between them. In this bus-based system, assume that a 
simple processor issues operations one at a time, in pro- 
gram order. Now add the optimization of a write buffer. 
Aprocessor can insert awrite into the buffer and proceed 
without waiting for the write to complete. Subsequent 
reads of the processor can bypass the buffered writes (to 
different addresses) for faster completion. 

Write buffers can violate sequential consistency. For 
the code in Figure 3a, a sequentially consistent system 
must not allow both processors’ reads of flags to return 0. 
However, this can happen in the system in Figure 3a: 
Each processor can buffer its write and allow the subse- 
quent read to bypass it. Therefore, both reads may be ser- 
viced by memory before either write, allowing both reads 
to return 0. 

OVERLAPPING WRITES. The optimization depicted in 
Figure 3b shows the importance of maintaining program 
order between two writes. Again, we consider operations 
with no data or control dependencies. This system has a 
general (nonbus) network and multiple memory modules, 
which can exploit more parallelism than the system in 
Figure 3a. Now multiple writes of a processor may be simul- 
taneously serviced by different memory modules. 

This optimization can also violate sequential consistency. 
In the code fragment in Figure 3b, assume that D a t a  and 
H e a d  reside in different memory modules. Because the 
write to H e a d  may be injected into the network before the 
write to D a t a  has reached its memory module, the two 
writes could complete out of program order. Therefore, P2 
might see the newvalue of H e a d  and yet get the old value 
of D a t a ,  a violation of sequential consistency. 

To maintain program order among writes, an acknowl- 
edgment can be returned to the processor that issued the 
write once the write has reached its target memory mod- 
ule. The processor could be constrained from injecting 
another write until it receives an acknowledgment of its 
previous write. 

This write acknowledgment technique can also main- 
tain program order from a write to a subsequent read in 
systems with general networks. 

NONBLOCKING READS. The optimization in Figure 3c 
illustrates the importance of maintaining program order 
between a read and a following operation. While most 
early RISC processors blocked on a read until it returned 
a value, recent processors proceed past reads, using tech- 
niques such as lockup-free caches and dynamic sched- 
uling. In Figure 3c, two overlapped reads violate 
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