
1

OpenMP Synchronization

 Mutual exclusion by critical sections

At i d t

#pragma omp parallel
{
// …
#pragma omp critical
sum += local_sum

}

• Named critical sections
•unnamed sections treated as one

•Critical section is scoped

 Atomic update
#pragma omp parallel
{
// …
#pragma omp atomic
sum += local_sum

}

•Specialized critical section

•May enable fast HW implementation

•Applies to following statement

OpenMP Synchronization

 Barrier directive
– Thread waits until all others reach this point

– Implicit barrier at end of each parallel region

#pragma omp parallel
{
// …
#pragma omp barrier
// …

}

2

OpenMP Scheduling
 Load balancing handled by runtime scheduler

 Scheduling policy can be set for each parallel loop Scheduling policy can be set for each parallel loop

Static Create blocks of size chunk and assign to threads before loop
begins execution. Default chunk creates equally-sized blocks.

Dynamic Create blocks of size chunk and assign to threads during loop
execution. Threads request a new block when finished

Scheduling Policies

processing a block. Default chunk is 1.

Guided Block size is proportional to number of unassigned iterations
divided by number of threads. Minimum block size can be set.

Runtime No block size specified. Runtime system determines iteration
assignment during loop execution.

OpenMP Matrix Multiply
#pragma omp parallel for
for(int i=0; i<M; ++i) {
for(int j=0; j<N; ++j) {
for(int k=0; k<L; ++k) {
C[i][j] +=

A[i][k]*B[k][j];
}

}
}

3

OpenMP Matrix Multiply
 Parallelizing two loops

– Uses nested parallelism support
E h l t f lt t i t d i d d tl

#pragma omp parallel for
for(int i=0; i<M; ++i) {
#pragma omp parallel for
for(int j=0; j<N; ++j) {

– Each element of result matrix computed independently

for(int k=0; k<L; ++k) {
C[i][j] +=

A[i][k]*B[k][j];
}

}
}

OpenMP Matrix Multiply
 Parallelizing inner loop

– Inner loop parallelized instead of outer loop
Mi i i k i h ll l l f ill t ti l

for(int i=0; i<M; ++i) {
for(int j=0; j<N; ++j) {
#pragma omp parallel for
for(int k=0; k<L; ++k) {

 Minimizes work in each parallel loop – for illustration purposes only

– Multiple threads contribute to each element in result matrix
– Critical section ensures only one thread updates at a time

#pragma omp critical
C[i][j] +=

A[i][k]*B[k][j];
}

}
}

4

OpenMP Matrix Multiply
 Use dynamic scheduling of iterations

#pragma omp parallel for \
schedule(dynamic)
for(int i=0; i<M; ++i) {
for(int j=0; j<N; ++j) {for(int j 0; j<N; ++j) {
for(int k=0; k<L; ++k) {
C[i][j] +=

A[i][k]*B[k][j];
}

}
}

OpenMP 3.0 – Task Decomposition

a = alice();
b = bob();
a = alice();
b = bob();

alice bob

boss cy

s = boss(a, b);
c = cy();
printf ("%6.2f\n",
bigboss(s,c));

s = boss(a, b);
c = cy();
printf ("%6.2f\n",
bigboss(s,c));

bigbossalice,bob, and cy
can be computed
in parallel

5

omp sections

 #pragma omp sections
 Must be inside a parallel region
 Precedes a code block containing of N blocks of code

that may be executed concurrently by N threads
 Encompasses each omp section

 #pragma omp section
 Precedes each block of code within the encompassing

block described above
 May be omitted for first parallel section after the parallel

sections pragma
 Enclosed program segments are distributed for parallel

execution among available threads

Functional Level Parallelism w sections

#pragma omp parallel sections
{
#pragma omp parallel sections
{
#pragma omp section /* Optional */

a = alice();
#pragma omp section

b = bob();
#pragma omp section

c = cy();
}

#pragma omp section /* Optional */
a = alice();

#pragma omp section
b = bob();

#pragma omp section
c = cy();

}}

s = boss(a, b);
printf ("%6.2f\n",

bigboss(s,c));

}

s = boss(a, b);
printf ("%6.2f\n",

bigboss(s,c));

6

Advantage of Parallel Sections

 Independent sections of code
can execute concurrently –can execute concurrently
reduce execution time

#pragma omp parallel sections
{

#pragma omp section
phase1();

#pragma omp parallel sections
{

#pragma omp section
phase1();

Serial Parallel

p ();
#pragma omp section
phase2();
#pragma omp section
phase3();

}

p ();
#pragma omp section
phase2();
#pragma omp section
phase3();

}

New Addition to OpenMP 3.0

 Tasks – Main change for g
OpenMP 3.0

 Allows parallelization of irregular
problems

unbounded loops unbounded loops

 recursive algorithms

 producer/consumer

7

What are tasks?

 Tasks are independent units of work

 Threads are assigned to perform the Threads are assigned to perform the
work of each task
– Tasks may be deferred

 Tasks may be executed immediately

 The runtime system decides which of
the above

Tasks are composed of:– Tasks are composed of:
 code to execute

 data environment

 internal control variables (ICV) Serial Parallel

Simple Task Example

A pool of 8 threads is

#pragma omp parallel
// assume 8 threads
#pragma omp parallel
// assume 8 threads

A pool of 8 threads is
created here

{
#pragma omp single private(p)
{
…
while (p) {
#pragma omp task
{
processwork(p);

{
#pragma omp single private(p)
{
…
while (p) {
#pragma omp task
{
processwork(p);

One thread gets to
execute the while loop

The single “while loop”
thread creates a task for}

p = p->next;
}

}
}

}
p = p->next;

}
}

}

thread creates a task for
each instance of
processwork()

8

Task Construct – Explicit Task View

– A team of threads is created
at the omp parallel construct
A i l th d i h t

#pragma omp parallel
{
#pragma omp parallel
{– A single thread is chosen to

execute the while loop – lets
call this thread “L”

– Thread L operates the while
loop, creates tasks, and
fetches next pointers

– Each time L crosses the omp
task construct it generates a
new task and has a thread
assigned to it

{
#pragma omp single
{ // block 1

node * p = head;
while (p) { //block 2
#pragma omp task
private(p)
process(p);

> t //bl k 3

{
#pragma omp single
{ // block 1

node * p = head;
while (p) { //block 2
#pragma omp task
private(p)
process(p);

> t //bl k 3
g

– Each task runs in its own
thread

– All tasks complete at the
barrier at the end of the
parallel region’s single
construct

p = p->next; //block 3
}

}
}

p = p->next; //block 3
}

}
}

Why are tasks useful?

Have potential to parallelize irregular patterns and recursive function calls
Single
Threaded

Thr1 Thr2 Thr3 Thr4

#prag

#pragma omp parallel
{

#pragma omp single
{ // block 1

node * p = head;
while (p) {

//block 2
#pragma omp task

#pragma omp parallel
{

#pragma omp single
{ // block 1

node * p = head;
while (p) {

//block 2
#pragma omp task

Block
1
Block 2
Task 1

Block 2
Task 2

Block
3

Block
1Block
3Block
3 Block 2

Task 2

Block 2
Task 1

Block 2
Task 3

Id
le

Id
le

#prag
{

#pr
{ //

no
w
#p

#pragma omp task
process(p);

p = p->next;
//block 3

}
}

}

#pragma omp task
process(p);

p = p->next;
//block 3

}
}

} Block 2
Task 3

Block
3

T
im

e

Time
Saved

p
}

}
}

9

Activity 3 – Linked List using Tasks

 Objective: Modify the linked list pointerObjective: Modify the linked list pointer
chasing code to implement tasks to
parallelize the application

 Follow the Linked List task activity called
LinkedListTask in the student lab doc

while(p != NULL){
do_work(p->data);
p = p->next;

}

while(p != NULL){
do_work(p->data);
p = p->next;

}

T k t d t b l t

When are tasks gauranteed to be complete?

 Tasks are gauranteed to be complete:

 At thread or task barriers
At the directive: #pragma omp barrier

At the directive: #pragma omp taskwait

10

Task Completion Example

ll l# ll l Multiple foo tasks created#pragma omp parallel
{

#pragma omp task
foo();
#pragma omp barrier
#pragma omp single
{

#pragma omp task

#pragma omp parallel
{

#pragma omp task
foo();
#pragma omp barrier
#pragma omp single
{

#pragma omp task

Multiple foo tasks created
here – one for each thread

All foo tasks guaranteed to
be completed here

One bar task created here
bar();

}
}

bar();
}

} bar task guaranteed to be
completed here

Parallel Construct – Implicit Task View

– Tasks are created in
OpenMP even without an
explicit task directive

#pragma omp parallel
explicit task directive.

– Lets look at how tasks are
created implicitly for the
code snippet below
 Thread encountering parallel

construct packages up a set of
implicit tasks

 Team of threads is created.

{
mydata
code
}

{
mydata
code
}

{
mydata
code
}

Thread

1
Thread

2
Thread

3

Barrier

 Each thread in team is assigned
to one of the tasks (and tied to it).

 Barrier holds original master
thread until all implicit tasks are
finished.

#pragma omp parallel
{ int mydata

code
}

{
int mydata;
code…

}

11

Task Construct

#pragma omp task [clause[[,]clause] ...]
structured-block

if (expression)
untied
shared (list)

where clause can be one of:

shared (list)
private (list)
firstprivate (list)
default(shared | none)

Tied & Untied Tasks

– Tied Tasks:
 A tied task gets a thread assigned to it at its first execution and

the same thread services the task for its lifetime

 A thread executing a tied task, can be suspended, and sent of to
execute some other task, but eventually, the same thread will
return to resume execution of its original tied task

 Tasks are tied unless explicitly declared untied

– Untied Tasks:
 An united task has no long term association with any given

thread Any thread not otherwise occupied is free to execute anthread. Any thread not otherwise occupied is free to execute an
untied task. The thread assigned to execute an untied task may
only change at a "task scheduling point".

 An untied task is created by appending “untied” to the task
clause

 Example: #pragma omp task untied

12

Task switching

 task switching The act of a thread switching from the execution of
one task to another task.

• The purpose of task switching is distribute threads among the
unassigned tasks in the team to avoid piling up long queues of
unassigned tasks

• Task switching, for tied tasks, can only occur at task scheduling
points located within the following constructs

• encountered task constructs• encountered task constructs
• encountered taskwait constructs
• encountered barrier directives
• implicit barrier regions
• at the end of the tied task region

• Untied tasks have implementation dependent scheduling points

 The thread executing the “for loop” , AKA the
generating task generates many tasks in a short

Task switching example

generating task, generates many tasks in a short
time so...

 The SINGLE generating task will have to suspend
for a while when “task pool” fills up
 Task switching is invoked to start draining the “pool”
 When the “pool” is sufficiently drained – then the single

task can being generating more tasks again

#pragma omp single
{

for (i=0; i<ONEZILLION; i++)
#pragma omp task

process(item[i]);
}

}

#pragma omp single
{

for (i=0; i<ONEZILLION; i++)
#pragma omp task

process(item[i]);
}

}

13

Table of Contents

 Introduction to Parallelism

 Introduction to Programming Models

 Shared Memory Programming
– OpenMP

– pThreads

 Message Passing Programming

 Shared Memory Models

 PGAS Languages

 Other Programming Models

Pthreads

 Specification part of larger IEEE POSIX standard
– POSIX is the Portable Operating System Interface

– Standard C API for threading libraries
 IBM provides Fortran API

– Introduced in 1995

Explicit threading of application Explicit threading of application
– User calls functions to create/destroy threads

Materials from http://www.llnl.gov/computing/tutorials/pthreads/

14

The Pthreads Model

 Execution Model
– Explicit parallelism

– Explicit synchronization

 Productivity
– Not a primary objective

– Library for existing language

– Low level of abstraction

– Uses opaque objects – prevents expansion

The Pthreads Model

 Performance
– No attempts to manage latency

– Load balancing left to OS

– Developer responsible for creating high degree of
parallelism by spawning threads

Portability Portability
– Library widely available

15

Pthreads Thread Management

 User creates/terminates threads

 Thread creation
– pthread_create
– Accepts a single argument (void *)

 Thread termination Thread termination
– pthread_exit
– Called from within terminating thread

Pthreads Synchronization
Mutual Exclusion Variables (mutexes)

•Mutexes must be initialized before use

pthread_mutex_t mutexsum;
void *dot_product(void *arg) {

…
pthread_mutex_lock (&mutexsum);
sum += mysum;
pthread mutex unlock (&mutexsum);

Mutexes must be initialized before use
•Attribute object can be initialized to enable error checking

pthread_mutex_unlock (&mutexsum);
…

}
int main() {

pthread_mutex_init(&mutexsum, NULL);
…
pthread_mutex_destroy(&mutexsum);

}

16

Pthreads Synchronization
Condition Variables
 Allows threads to synchronize based on value of

d tdata

 Threads avoid continuous polling to check
condition

 Always used in conjunction with a mutex
– Waiting thread(s) obtain mutex then wait

 pthread_cond_wait() function unlocks mutex
 mutex locked for thread when it is awakened by signal

– Signaling thread obtains lock then issues signal
 pthread_cond_signal() releases mutex

Condition Variable Example
Two threads update a counter
Third thread waits until counter reaches a threshold
pthread_mutex_t mtx;
pthread_cond_t cv;

int main() {
…
pthread_mutex_init(&mtx, NULL);
pthread_cond_init (&cv, NULL);
…
th d t (&th d [0] & ttpthread_create(&threads[0], &attr,

inc_count, (void *)&thread_ids[0]);
pthread_create(&threads[1], &attr,

inc_count, (void *)&thread_ids[1]);
pthread_create(&threads[2], &attr,

watch_count, (void *)&thread_ids[2]);
…
}

17

Condition Variable Example

Incrementing Threads Waiting Thread

void *inc_count(void *idp) {
…
for (i=0; i<TCOUNT; ++i) {

pthread_mutex_lock(&mtx);
++count;
if (count == LIMIT)
pthread_cond_signal(&cv);

void *watch_count(void *idp) {
…
pthread_mutex_lock(&mtx);
while (count < COUNT_LIMIT) {
pthread_cond_wait(&cv, &mtx);

}
pthread_mutex_unlock(&mtx);

Incrementing Threads Waiting Thread

_ _
pthread_mutex_unlock(&mtx);
…

}
…
}

_ _
…
}

pthread_cond_broadcast() used if multiple threads waiting on signal

Pthreads Matrix Multiply
int tids[M];
pthread_t threads[M];
pthread attr t attr;

void* work(void* tid) {
for(int j=0; j<N; ++j) {
for(int k=0; k<L; ++k) {pthread_attr_t attr;

pthread_attr_init(&attr);
pthread_attr_setdetachstate(

&attr,
PTHREAD_CREATE_JOINABLE);

for (i=0; i<M; ++i) {
tids[i] = i;
th d t (h d [i]

C[tid][j] +=
A[tid][k]*B[k][j];

}
}
pthread_exit(NULL);

}

pthread_create(&threads[i],
&attr, work, (void *) &tids[i]);

}

for (i=0; i<M; ++i) {
pthread_join(threads[i], NULL);

}

18

References
OpenMP

http://www openmp orghttp://www.openmp.org

http://www.llnl.gov/computing/tutorials/openMP

Pthreads

http://www.llnl.gov/computing/tutorials/pthreads

"Pthreads Programming". B. Nichols et al. O'Reilly
and Associates.

"Programming With POSIX Threads". D. Butenhof.
Addison Wesley

Table of Contents

 Introduction to Parallelism

I t d ti t P i M d l Introduction to Programming Models

 Shared Memory Programming

 Message Passing Programming
– MPI

– Charm++

 Shared Memory Models

 PGAS Languages

 Other Programming Models

19

Message Passing Model

 Large scale parallelism (up to 100k+ CPUs)

 Multiple (possibly heterogeneous) system images

 Distributed memory
– Nodes can only access local data

– Application (User) responsible for:
 Distributing data

R di t ib ti d t (h) Redistributing data (when necessary)

 Maintaining memory coherent

Message Passing Model

 Explicit communication
– Two-sided P2P:Two sided P2P:

 Communication initiated on one side requires matching action on the
remote side

 E.g. MPI_Send – MPI_Recv

– One-sided P2P:
 Communication is initiated on one side and no action is required on the

other

 E.g. MPI_Get/Put, gasnet_get/put ...

 Implicit synchronization with two-sided communication
– The matching of communication operations from both sides ensures

synchronization

20

Message Passing Model

 Objectives of the model
Enabling parallelization on highly scalable hardware– Enabling parallelization on highly scalable hardware

– Support for heterogeneous systems

– Often coarse-grained parallelism

 Main issues
– Communication

Synchronization– Synchronization

– Load balancing

Projects of Interest

 Message Passing Interface (MPI)
De facto standard for this model– De facto standard for this model

– Deemed low level and difficult to program

– Two-sided and one-sided communication

 Charm++
– Asynchronous Remote Method Invocation (RMI) communication

– Split-phase programming modelSplit phase programming model
 No synchronous communication
 Caller provides a callback handler to asynchronously process “return” value

21

Table of Contents

 Introduction to Parallelism

I t d ti t P i M d l Introduction to Programming Models

 Shared Memory Programming

 Message Passing Programming
– MPI

– Charm++

 Shared Memory Models

 PGAS Languages

 Other Programming Models

Message Passing Interface (MPI)

 1980s – early 1990s
– Distributed memory, parallelDistributed memory, parallel

computing develops

– Many incompatible software tools

– Usually tradeoffs between
portability, performance, functionality
and price

 Recognition of the need for a
standard arosestandard arose.

Material from: http://www.llnl.gov/computing/tutorials/mpi/

22

Message Passing Interface (MPI)

 Standard based on the consensus of the MPI Forum
– Not sanctioned by any major standards bodyNot sanctioned by any major standards body

– Wide practical acceptance

– No effective alternative to date

 First draft of the MPI-1 standard presented at Supercomputing 1993

 Current standard MPI-2 developed between 1995 and 1997

 Standardization committee open to all members of the HPC community

Further reading and standard documents: http://www.mpi-forum.org/

Message Passing Interface (MPI)

 Objectives
– High performance and scalabilityHigh performance and scalability
– Portability
– Productivity is not an objective (actually it was)

 Used as communication layer for higher-level libraries
– Often for more productivity-oriented libraries

– ISO/OSI layer-5 interface
 Communication is reliable and sessions are managed internally

 Data is not structured

23

MPI: Specification, not Implementation

 Language Independent Specification (LIS)

 Library implementations of MPI vary in: Library implementations of MPI vary in:
– Performance

 Target or rely on specific hardware (RDMA, PIM, Coprocessors …)

 Provide load-balancing and processor virtualization (e.g., AMPI)

– Functionality
 Support for parallel I/O

 Support for multithreading within MPI processes

 Standard provides language bindings for Fortran, C and C++

 Implementations usually provide APIs for C, C++ and Fortran

 Project implementations for Python, OCaml, and Java

MPI – Programming Model

Execution Model
– Explicitly parallelp y p

 Programmer responsible for correctly identifying parallelism and for
implementing parallel algorithms using MPI constructs

 Multi-threaded view

– SPMD

– Explicit data distribution

– Flat parallelism
 Number of tasks dedicated to run a parallel program is static

– Processor Consistency (one-sided communication)

24

MPI – Programming Model
Productivity

– Not a principal objective
 Low level of abstraction
 Communication is not structured (marshalling done by the user)

Performance
– Vendor implementations exploit native hardware features

to optimize performance

Portability
– Most vendors provide an implementation

 E.g., Specialized open source versions of MPICH, LAM or OpenMPI

– Standard ensures compatibility

MPI – Program Structure

General program structure Communicators and groups
• Collection of processes that may communicateCollection of processes that may communicate
• Unique rank (processor ID) within communicator
• Default communicator: MPI_COMM_WORLD

Materials from: http://www.llnl.gov/computing/tutorials/mpi/

25

MPI – Point to Point Communication

Types of Point-to-Point Operations:

 Message passing between two and only two different MPI tasks Message passing between two, and only two, different MPI tasks
– One task performs a send operation

– The other task matches with a receive operation

 Different types of send/receive routines used for different purposes
– Synchronous send

– Blocking send / blocking receive

– Non-blocking send / non-blocking receive

– Buffered send

– Combined send/receive

– "Ready" send

 Any type of send can be paired with any type of receive

 Test and Probe routines to check the status of pending operations

Material from: http://www.llnl.gov/computing/tutorials/mpi/

MPI – Point to Point Communication

Blocking vs. Non-blocking

 Most routines can be used in either blocking or non-blocking mode Most routines can be used in either blocking or non blocking mode

 Blocking communication routines
– Blocking send routines only return when it is safe to reuse send buffer

 Modifications to send buffer will not affect data received on the remote side
 Data already sent

 Data buffered in a system buffer

– Blocking send calls can be synchronous
 Handshaking with the receiver

– Blocking send calls can be asynchronous g y
 System buffer used to hold the data for eventual delivery to the receiver

– Blocking receive calls only return after the data has arrived and is ready for use by
the program

Materials from: http://www.llnl.gov/computing/tutorials/mpi/

26

MPI – Point to Point Communication

Blocking communication example
#include "mpi.h"
#include <stdio.h>

int main(int argc,char *argv[]) {
int numtasks, rank, dest, source, rc, count, tag=1;
char inmsg, outmsg='x';
MPI_Status Stat;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {
dest = 1;
source = 1;
rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);

}

Materials from: http://www.llnl.gov/computing/tutorials/mpi/

else if (rank == 1) {
dest = 0;
source = 0;
rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);
rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

}

rc = MPI_Get_count(&Stat, MPI_CHAR, &count);
printf("Task %d: Received %d char(s) from task %d with tag %d \n",

rank, count, Stat.MPI_SOURCE, Stat.MPI_TAG);

MPI_Finalize();
}

MPI – Point to Point Communication

Blocking vs. Non-blocking

 Non-blocking communication routines Non blocking communication routines
– Send and receive routines behave similarly

 Return almost immediately

 Do not wait for any communication events to complete
 Message copying from user memory to system buffer space

 Actual arrival of message

– Operations "request" the MPI library to perform an operation
 Operation is performed when its requirements are met (e.g., message arrives)

 User cannot predict when that will happen

Unsafe to modify the application buffer until completion of operation– Unsafe to modify the application buffer until completion of operation
 Wait and Test routines used to determine completion

 Non-blocking communications primarily used to overlap computation with
communication and exploit possible performance gains

Material from: http://www.llnl.gov/computing/tutorials/mpi/

27

MPI – Point to Point Communication

Non-blocking communication example

MPI Request reqs[4]; _ q q [];
MPI_Status stats[4];

prev = rank-1;
next = rank+1;
if (rank == 0) prev = numtasks - 1;
if (rank == (numtasks - 1)) next = 0;

MPI_Irecv(&buf[0], 1, MPI_INT, prev, tag1, MPI_COMM_WORLD, &reqs[0]);
MPI_Irecv(&buf[1], 1, MPI_INT, next, tag2, MPI_COMM_WORLD, &reqs[1]);

MPI_Isend(&rank, 1, MPI_INT, prev, tag2, MPI_COMM_WORLD, &reqs[2]);
MPI_Isend(&rank, 1, MPI_INT, next, tag1, MPI_COMM_WORLD, &reqs[3]);

{

Materials from: http://www.llnl.gov/computing/tutorials/mpi/

{
// do some work
// work will overlap with previous communication

}

MPI_Waitall(4, reqs, stats);

MPI – Point to Point Communication

Order and Fairness

 Message Ordering Message Ordering
– Messages do not overtake each other

 If a sender sends two messages (Message 1 and Message 2) in succession to
the same destination, and both match the same receive, the receive operation
will receive Message 1 before Message 2.

 If a receiver posts two receives (Receive 1 and Receive 2), in succession, and
both match the same message, Receive 1 will receive the message before
Receive 2.

– Ordering is not thread-safe
If multiple threads participate in the communication no order is guaranteed If multiple threads participate in the communication, no order is guaranteed

 Fairness of Message Delivery
– No fairness guarantee

 Programmer responsible for preventing operation starvation

– Example: task 0 sends a message to task 2. However, task 1 sends a
competing message that matches task 2's receive. Only one of the sends
will complete.

Material from: http://www.llnl.gov/computing/tutorials/mpi/

28

MPI – Point to Point Communication

Buffering when tasks are out of sync

If i ti i t d t d t i b ff d If a receive operation is not ready, sent data is buffered
– On receiving side, sending side or both

 User can manage buffering memory on sending side

Material from: http://www.llnl.gov/computing/tutorials/mpi/

MPI – Collective Communication

 All or None
– Must involve all processes in the scope of the used communicator

– User responsible to ensure all processes within a communicator
participate in any collective operation

 Types of Collective Operations
– Synchronization (barrier)

 Processes wait until all members of the group reach the synchronization point

– Data Movement
 Broadcast, scatter/gather, all to all, g ,

– Collective Computation (reductions)
 One member of the group collects data from the other members and performs

an operation (e.g., min, max, add, multiply, etc.) on that data

Material from: http://www.llnl.gov/computing/tutorials/mpi/

29

MPI – Collective Communication

Programming Considerations and Restrictions

C ll ti ti bl ki Collective operations are blocking

 Collective communication routines do not take message
tag arguments

 Collective operations within subsets of processes
Partition the subsets into new groups– Partition the subsets into new groups

– Attach the new groups to new communicators

 Can only be used with MPI predefined data types
– Not with MPI Derived Data Types

Material from: http://www.llnl.gov/computing/tutorials/mpi/

MPI – Matrix Multiply (master task)

#define NRA 15 // Number of rows in matrix A
#define NCA 25 // Number of columns in A
#define NCB 10 // Number of columns in B
#define TAG 0 // MPI communication tag• Initialization

Common to both master
and worker processes

// g
// Data structures
double A[NRA][NCA];// matrix A to be multiplied
double B[NCA][NCB];// matrix B to be multiplied
double C[NRA][NCB];// result matrix C

avgNumRows = NRA/numWorkers;
remainingRows = NRA%numWorkers;
offset = 0;
for (dest = 1; dest <= numWorkers; ++dest) {

rows = (dest <= remainingRows) ? avgNumRows + 1 : avgNumRows;
MPI_Send(&offset, 1, MPI_INT, dest, TAG, MPI_COMM_WORLD);
MPI_Send(&rows, 1, MPI_INT, dest, TAG, MPI_COMM_WORLD);
count = rows * NCA;
// Send horizontal slice of A
MPI Send(&A[offset][0] count MPI DOUBLE dest TAG MPI COMM WORLD);

• Initialization

• Distribute
data to
workers

MPI_Send(&A[offset][0], count, MPI_DOUBLE, dest, TAG, MPI_COMM_WORLD);
// Send matrix B
count = NCA * NCB;
MPI_Send(&B, count, MPI_DOUBLE, dest, TAG, MPI_COMM_WORLD);
offset += rows;

}

for (i = 1; i <= numworkers; ++i) {
source = i;
MPI_Recv(&offset, 1, MPI_INT, source, TAG, MPI_COMM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, source, TAG, MPI_COMM_WORLD, &status);
count = rows * NCB;
MPI_Recv(&C[offset][0], count, MPI_DOUBLE, source, TAG,MPI_COMM_WORLD,&status);

}

• Wait for
results from
workers

30

MPI – Matrix Multiply (worker task)

source = 0;
MPI_Recv(&offset, 1, MPI_INT, source, TAG, MPI_COMM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, source, TAG, MPI_COMM_WORLD, &status);
// Receive horizontal slice of A• Receive data // Receive horizontal slice of A
count = rows * NCA;
MPI_Recv(&A, count, MPI_DOUBLE, source, TAG, MPI_COMM_WORLD, &status);
// Receive matrix B
count = NCA * NCB;
MPI_Recv(&B, count, MPI_DOUBLE, source, TAG, MPI_COMM_WORLD, &status);

• Receive data
from master

// Compute the usual matrix multiplication on the slice of matrix A and matrix B
for (k = 0; k < NCB; ++k) {

for (i = 0; i < rows; ++i) {
C[i][k] = 0.0;
for (j = 0; j < NCA; ++j) {

C[i][k] += A[i][j] * B[j][k];
}

• Process data

}
}

destination = 0;
MPI_Send(&offset, 1, MPI_INT, destination, TAG, MPI_COMM_WORLD);
MPI_Send(&rows, 1, MPI_INT, destination, TAG, MPI_COMM_WORLD);
count = rows * NCB;
// Send horizontal slice of result matrix C computed on this node
MPI_Send(&C, count, MPI_DOUBLE, destination, TAG, MPI_COMM_WORLD);

• Send results
back to
master

Table of Contents

 Introduction to Parallelism

I t d ti t P i M d l Introduction to Programming Models

 Shared Memory Programming

 Message Passing Programming
– MPI

– Charm++

 Shared Memory Models

 PGAS Languages

 Other Programming Models

