

- Can be replaced by holding a talk during the semester on a topic
- agreed with me in advance

Table of Contents (subject to change)

- Introduction to Parallelism
- Introduction to Programming Models
- Shared Memory Programming
- Message Passing Programming
- Shared Memory Models
- PGAS (Parallel Global Address Space) Languages
- Other Programming Models

Classification

Flynn's Taxon	Nowadays	
SISD	SIMD	SPMD
Single Instruction	Single Instruction	Single Program
Single Data	Multiple Data	Multiple Data
MISD	MIMD	MPMD
Multiple Instructions	Multiple Instructions	Multiple Program
Single Data	Multiple Data	Multiple Data

- Execution models impact the above programming model
- Traditional computer is SISD
- SIMD is data parallelism while MISD is pure task parallelism
- MIMD is a mixed model (harder to program)
- SPMD and MPMD are less synchronized than SIMD and MIMD
- SPMD is most used model, but MPMD is becoming popular

Reduce wall clock time

• Methods

- Parallelizing serial algorithms (parallel loops)
 - Total number of operations performed changes only slightly
 - Scalability may be poor (Amdahl's law)
- Develop parallel algorithms
 - Total number of operations may increase, but the running time decreases
- Work Complexity
 - Serialization: parallel algorithm executed sequentially Serializing parallel algorithm may lead to sub-optimal sequential complexity

Para	llel Pr	ogram	ming Models	
Many lang parallel ap <i>Each prese</i> During this parallel mo	guages ar oplications ents a prog course, we	nd librarie s. g ramming 'll discuss o a them to ex	s exist for creating model to its users.	
,	OpenMP Pthreads Cilk TBB HPF MPI	Charm++ UPC STAPL X10 Fortress Chapel	Linda MapReduce Matlab DCE OpenCL	Pater

