
1

Parallel Programming

SCPD Master Module

Emil Slusanschi

emil.slusanschi@cs.pub.ro

University Politehnica of Bucharest

Acknowledgement

 The material in this course has been adapted

from various (cited) authoritative sources by

Lawrence Rauchwerger from the Parasol Lab

and myself and is used with his approval

 The presentation has been put together with the

h l f D M Bi A t i P Tihelp of Dr. Mauro Bianco, Antoniu Pop, Tim

Smith and Nathan Thomas from the Parasol Lab

at Texas A&M University

2

Grading@PP
 Activity during lectures – 1 point

– Presence in class for the lectures is compulsory but does not
insure the point you have to (try to) participate activelyinsure the point – you have to (try to) participate actively

 Project work – 5 points
– Similar to APP:

 3/coding, 1/documentation, 1/presentation, 1/bonus

– Topics from subjects related to the PP

– Teams of 2-3 people – independent grading

– Subject can also be done in the “research” hours – at the end aSubject can also be done in the research hours at the end a
paper/presentation should emerge

 Oral exam – 4 points
– 5-10 minutes / person

– 2-3 subjects from the lecture

– Can be replaced by holding a talk during the semester on a topic
agreed with me in advance

Table of Contents
(subject to change)

 Introduction to Parallelism

 Introduction to Programming Models

 Shared Memory Programming

 Message Passing Programming
 Shared Memory Models

 PGAS (Parallel Global Address Space) (p)
Languages

 Other Programming Models

3

What Will You Get from this Lecture

 (New) Ideas about parallel processing

 Different approaches to parallel programming

 Various programming models used in parallel
computing

 Practical experiences with some of the
models/technologies presented in this lecture

Table of Contents

 Introduction to Parallelism
– What is Parallelism ? What is the Goal ?

 Introduction to Programming Models

 Shared Memory Programming

 Message Passing Programming

 Shared Memory Modelsy

 PGAS Languages

 Other Programming Models

4

Introduction to Parallelism

 Sequential Computing
– Single CPU executes stream of instructions.

Adapted from: http://www.llnl.gov/computing/tutorials/parallel_comp

Introduction to Parallelism

 Parallel computing
– Partition problem into multiple, concurrent

streams of instructions.

5

Classification
Flynn’s Taxonomy (1966-now) Nowadays

SISD SIMD SPMD

Single Instruction

Single Data

Single Instruction

Multiple Data

Single Program

Multiple Data

MISD

Multiple Instructions

Single Data

MIMD

Multiple Instructions

Multiple Data

MPMD

Multiple Program

Multiple Data

• Execution models impact the above programming model
• Traditional computer is SISD
• SIMD is data parallelism while MISD is pure task parallelism
• MIMD is a mixed model (harder to program)
• SPMD and MPMD are less synchronized than SIMD and MIMD
• SPMD is most used model, but MPMD is becoming popular

Introduction to Parallelism

 Goal of parallel computing
– Save time - reduce wall clock time.

 Speedup -

– Solve larger problems - problems that take
more memory than available to 1 CPU.y

6

Reduce wall clock time

 Methods
– Parallelizing serial algorithms (parallel loops)

 Total number of operations performed changes only slightly

 Scalability may be poor (Amdahl’s law)

– Develop parallel algorithms
 Total number of operations may increase, but the running time

decreases

 Work Complexity
– Serialization: parallel algorithm executed sequentially

Serializing parallel algorithm may lead to sub-optimal
sequential complexity

Amdahl’s law revisited

7

Performance Models

 Abstract Machine Models (PRAM, BSP, and
th)many, many others)

– Allow asymptotical analysis and runtime estimations

– Often inaccurate for selecting the right
implementation/algorithm on a given architecture

 Programming Primitives Behavior
Allow the selection of the right implementation– Allow the selection of the right implementation

– Increases programming effort

Abstract Machine

 PRAM (Parallel RAM, shared memory)
– Processors access a shared flat memory– Processors access a shared flat memory
– Performing an operation or accessing a memory

location has cost = 1
 BSP (Bulk Synchronous Parallel, distributed

memory)
– Computation proceeds through supersteps
– Cost of a superstep is w+hg+lp p g
– w is the time for computing on local data
– h is the size of the largest message sent
– g and l are architectural parameters describing network

bandwidth and latency, respectively

8

Table of Contents

 Introduction to Parallelism
 Introduction to Programming Modelsg g

– Parallel Execution Models
 Models for Communication
 Models for Synchronization
 Memory Consistency Models
 Runtime systems

– Productivity
– Performance
– Portability

 Shared Memory Programming
 Message Passing Programming
 Shared Memory Models
 PGAS Languages
 Other Programming Models

Parallel Programming Models

Many languages and libraries exist for creating
parallel applicationsparallel applications.
Each presents a programming model to its users.

During this course, we’ll discuss criteria for evaluating a
parallel model and use them to explore various approaches.

Ch ++ Li dCharm++
UPC
STAPL
X10
Fortress
Chapel

Linda
MapReduce
Matlab DCE
OpenCL

OpenMP
Pthreads
Cilk
TBB
HPF
MPI

9

Programming Models Evaluation

What should we consider when evaluating a parallel
programming model?programming model?

– Parallel Execution Model

– Productivity

– Performance

– Portability

Table of Contents

 Introduction to Parallelism
 Introduction to Programming Modelsg g

– Parallel Execution Model
 Models for Communication
 Models for Synchronization
 Memory Consistency Models
 Runtime systems

– Productivity
– Performance
– Portability

 Shared Memory Programming
 Message Passing Programming
 Shared Memory Models
 PGAS Languages
 Other Programming Models

10

Parallel Execution Model

Application

PortabilityPerformanceProductivityExec Model

Parallelism Communication
Runtime System

Parallel
Programming

Library/Language

Synchronization

CommunicationParallelism Synchronization Consistency

System independent abstraction

Consistency

User view

PPL/L view

Operating System Kernel SchedulerKernel Threads I/O Synchronization

Memory ManagementScheduling Load Balancing

Runtime System

Functional extension of the OS
in user space

Parallel I/O

Parallel Execution Model

 Parallel Programming Model (user view)

PortabilityPerformanceProductivityExec Model

g g ()
– Parallelism

– Communication

– Synchronization

– Memory consistency

 Runtime System (RTS)
– Introduction, definition and objectives

– Usual services provided by the RTS

– Portability / Abstraction

11

Parallel Programming Model (user view)

 Parallelism

PortabilityPerformanceProductivityExec Model

 Communication

 Synchronization

 Memory consistency

Implicit parallelism (single-threaded view)

PPM – Implicit Parallelism

PortabilityPerformanceProductivityExec Model

 User not required to be aware of the parallelism
– User writes programs unaware of concurrency

 Possible re-use previously implemented sequential algorithms

 Often minor modifications to parallelize

– User not required to handle synchronization or communication
 Dramatic reduction in potential bugs

 Straightforward debugging (with appropriate tools)

 Productivity closer to sequential programming

 Performance may suffer depending on application

 E.g. Matlab DCE, HPF, OpenMP*, Charm++*

* at various levels of implicitness

12

PPM – Explicit Parallelism

Explicit parallelism (multi-threaded view)

PortabilityPerformanceProductivityExec Model

 User required to be aware of parallelism
– User required to write parallel algorithms

 Complexity designing parallel algorithms
 Usually impossible to re-use sequential algorithms (except for

embarrassingly parallel ones)

– User responsible for synchronization and/or communication
 Major source of bugs and faulty behaviors (e.g. deadlocks) Major source of bugs and faulty behaviors (e.g. deadlocks)
 Hard to debug
 Hard to even reproduce bugs

 Considered low-level
– Productivity usually secondary
– Best performance when properly used, but huge development cost
– E.g. MPI, Pthreads

PPM – Mixed Parallelism

Mixed view

PortabilityPerformanceProductivityExec Model

 Basic usage does not require parallelism awareness

 Optimization possible for advanced users

 Benefits from the two perspectives
– High productivity for the general case

– High performance possible by fine-tuning specific areas of the
code

 E.g. STAPL, Chapel, Fortress

13

Table of Contents

 Introduction to Parallelism
 Introduction to Programming Modelsg g

– Parallel Execution Model
 Models for Communication
 Models for Synchronization
 Memory Consistency Models
 Runtime systems

– Productivity
– Performance
– Portability

 Shared Memory Programming
 Message Passing Programming
 Shared Memory Models
 PGAS Languages
 Other Programming Models

PPM – Explicit Communication

Explicit Communication

MPI_Send

MPI_Recv

MPI_Put

[nothing]

PortabilityPerformanceProductivityExec Model

 Message Passing (two-sided communication, P2P)
– User explicitly sends/receives messages (e.g., MPI)

– User required to match every Send operation with a Receive

– Implicitly synchronizes the two threads
 Often excessive synchronization (reduces concurrency)

 Non-blocking operations to alleviate the problem (e.g., MPI Isend/Recv)g p p (g , _)

 One-sided communication
– User uses get/put operations to access memory (e.g., MPI-2,

GASNet, Cray T3D)

– No implicit synchronization (i.e., asynchronous communication)

14

PPM – Explicit Communication

Explicit Communication – Active Message, RPC, RMI

PortabilityPerformanceProductivityExec Model

 Based on Message Passing

 Messages activate a handler function or method on the remote side

 Asynchronous
– No return value (no get functions)

– Split-phase programming model (e.g. Charm++, GASNet)
 Caller provides a callback handler to asynchronously process “return” value

 Synchronous
– Blocking semantic (caller stalls until acknowledgement/return is received)
– Possibility to use get functions

 Mixed (can use both)
– E.g., ARMI (STAPL)

PPM – Implicit Communication

Implicit Communication

PortabilityPerformanceProductivityExec Model

 Communication through shared variables

 Synchronization is primary concern
– Condition variables, blocking semaphores or monitors

– Full/Empty bit

 Producer/consumer between threads are expressed with
h i tisynchronizations

 Increases productivity
– User does not manage communication

– Reduced risk of introducing bugs

