
Parallel Programming
and Parallel Abstractions
in Fortress

Guy Steele
Sun Microsystems Laboratories
October 2006

Parallel Programming and Parallel Abstractions in Fortress

2© 2006 Sun Microsystems, Inc. All rights reserved.

Copyright © 2006 Sun Microsystems, Inc. ("Sun"). All rights are reserved by Sun except as expressly stated as follows.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted, provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers, or to redistribute to lists, requires prior specific
written permission of Sun.

Parallel Programming and Parallel Abstractions in Fortress

3© 2006 Sun Microsystems, Inc. All rights reserved.

Fortress: “To Do for Fortran
What JavaTM Did for C”

• Catch “stupid mistakes” (like array bounds errors)
• Extensive libraries (e.g., for network environment)
• Security model (including type safety)
• Dynamic compilation
• Platform independence
• Multithreading

• Make programmers more productive

Parallel Programming and Parallel Abstractions in Fortress

4© 2006 Sun Microsystems, Inc. All rights reserved.

The Context of the Research
• Improving programmer productivity

for scientific and engineering applications
• Research funded in part by the US DARPA IPTO

(Defense Advanced Research Projects Agency
Information Processing Technology Office) through
their High Productivity Computing Systems program

• Goal is economically viable technologies for both
government and industrial applications by the year
2010 and beyond

• Targeted to a range of hardware, from petaflop
supercomputers to single/multiple multicore chips

Parallel Programming and Parallel Abstractions in Fortress

5© 2006 Sun Microsystems, Inc. All rights reserved.

Key Ideas

• Don't build the language—grow it

• Make programming notation closer to math

• Ease use of parallelism

Parallel Programming and Parallel Abstractions in Fortress

6© 2006 Sun Microsystems, Inc. All rights reserved.

Growing a Language

• Languages have gotten much bigger
• You can’t build one all at once
• Therefore it must grow over time
• What happens if you design it to grow?
• How does the need to grow affect the design?
• Need to grow a user community, too

See Steele, “Growing a Language” keynote talk, OOPSLA 1998;
Higher-Order and Symbolic Computation 12, 221–236 (1999)

Parallel Programming and Parallel Abstractions in Fortress

7© 2006 Sun Microsystems, Inc. All rights reserved.

Interesting Language Design Strategy

Wherever possible,
consider whether a proposed language feature

can be provided by a library
rather than having it built into the compiler.

To make this work, library designers need
substantial control over syntax and semantics—

not just the ability to code new functions or methods
invoked by a single method call syntax foo(a,b,c).

Parallel Programming and Parallel Abstractions in Fortress

8© 2006 Sun Microsystems, Inc. All rights reserved.

Minimalist Approach

• As few primitive types as possible (cf. Bacon’s Kava)
> Objects with methods and fields
> Binary words of many different sizes
> Linear sequences (fixed length known at compile time)
> Heap sequences (fixed length known at allocation time)

• User-defined parameterized types
• User-defined polymorphic (overloaded) operators
• Aggressive type inference to reduce clutter

> Many variables require no type declarations

• Aggressive static and dynamic optimization

Parallel Programming and Parallel Abstractions in Fortress

9© 2006 Sun Microsystems, Inc. All rights reserved.

Types Defined by Libraries

• Lists, vectors, sets, multisets, and maps
> Like C Standard Template Library, but better notation

• Matrices and multidimensional arrays
• Integers, floats, rationals, with physical units

m: ℝ Mass = 3.7 kg
v: ℝ3 Velocity = [3.5 0 1] m/s
p: ℝ3 Momentum = m v

• Data structures may be local or distributed

〈1,2,4,3,4〉
[3 4 5]×[1 0 0]

A∪{1,2,3,4}

Parallel Programming and Parallel Abstractions in Fortress

10© 2006 Sun Microsystems, Inc. All rights reserved.

ASCII (“Wiki-like markup”) Notation

• Lists, vectors, sets, multisets, and maps
> Like C Standard Template Library, but better notation

<|1,2,3,4|> A UNION {1,2,3,4}

 [3 4 5] CROSS [1 0 0]

• Matrices and multidimensional arrays
• Integers, floats, rationals, with physical units

m: RR Mass = 3.7 kg_
v: RR^3 Velocity = [3.5 0 1] m/s_
_p: RR^3 Momentum = m _v

• Data structures may be local or distributed

Parallel Programming and Parallel Abstractions in Fortress

11© 2006 Sun Microsystems, Inc. All rights reserved.

A Growable, Open Language
• Old language design model:

> Study applications
> Add language features to improve application coding

• Our new model:
> Study applications
> Study how a library can improve application coding
> Add language features to improve library coding

• Conjectures:
> Better leverage, leading to more rapid improvement
> Enables experimentation with open-source strategies

Parallel Programming and Parallel Abstractions in Fortress

12© 2006 Sun Microsystems, Inc. All rights reserved.

Replaceable Components

• Avoid a monolithic “Standard Library”
• Replaceable components with version control
• Encourage alternate implementations

> Performance choices
> Test them against each other

• Encourage experimentation
> Framework for alternate language designs

Parallel Programming and Parallel Abstractions in Fortress

13© 2006 Sun Microsystems, Inc. All rights reserved.

Making Abstraction Efficient

• We assume implementation technology that
makes aggressive use of runtime performance
measurement and optimization
> Frequently more efficient that static optimization

• Repeat the success of the JavaTM Virtual Machine
• Goal: programmers (especially library writers)

need never fear subroutines, functions, methods,
and interfaces for performance reasons

• This may take years, but we’re talking 2010

Parallel Programming and Parallel Abstractions in Fortress

14© 2006 Sun Microsystems, Inc. All rights reserved.

Type System: Objects and Traits

• Traits: like interfaces, but may contain code
> Based on work by Schärli, Ducasse, Nierstrasz, Black, et al.

• Multiple inheritance of code (but not fields)
> Objects with fields are the leaves of the hierarchy

• Multiple inheritance of contracts and tests
> Automated unit testing

• Traits and methods may be parameterized
> Parameters may be types or compile-time constants

• Primitive types are first-class
> Booleans, integers, floats, characters are all objects

Parallel Programming and Parallel Abstractions in Fortress

15© 2006 Sun Microsystems, Inc. All rights reserved.

Sample Code: Algebraic Constraints

(This is actual Fortress library code.)

Parallel Programming and Parallel Abstractions in Fortress

16© 2006 Sun Microsystems, Inc. All rights reserved.

Data and Control Models

• Data model: shared global address space
• Control model: multithreaded

> Basic primitive is “spawn”
> We hope application code seldom uses it

• Declared distribution of data and threads
> Managing aggregates integrated into type system
> Policies programmed as libraries, not wired in

• Transactional access to shared variables
> Atomic blocks (implicit or explicit retry)
> Lock-free (no blocking, no deadlock)

Parallel Programming and Parallel Abstractions in Fortress

17© 2006 Sun Microsystems, Inc. All rights reserved.

Conventional Mathematical Notation
• The language of mathematics is centuries old,

concise, convenient, and widely taught
• Early programming languages were constrained by

keyboards and printers
• Experiments in the 1960s were not portable
• Now we have bitmap displays and Unicode
• Still, parsing mathematical notation is a challenge

> Subtle reliance on whitespace: { |x| | x ← S, 3 | x }
> Semantic conventions: y = 3 x sin x cos 2 x log log x

• Programming language tradition has contributions
> Type theory, block structure, variable scope

Parallel Programming and Parallel Abstractions in Fortress

18© 2006 Sun Microsystems, Inc. All rights reserved.

What Syntax is Actually Wired In?
• Parentheses () for grouping
• Comma , to separate expressions in tuples
• Semicolon ; to separate statements on a line
• Dot . for field and method selection
• Conservative, traditional rules of precedence

> A dag, not always transitive (examples: A+B>C is okay;
so is B>C∨D>E; but A+B∨C needs parentheses)

• Juxtaposition is a binary operator
• Any other operator can be infix, prefix, and/or postfix
• Many sets of brackets

Parallel Programming and Parallel Abstractions in Fortress

19© 2006 Sun Microsystems, Inc. All rights reserved.

Libraries Define . . .
• Which operators have infix, prefix, postfix definitions,

and what types they apply to
 opr -(m:ℤ,n:ℤ) = m.subtract(n)

 opr -(m:ℤ) = m.negate()

 opr (n:ℕ)! = if n=0 then 1 else n·(n-1)! end

• Whether a juxtaposition is meaningful
 opr juxtaposition(m:ℤ,n:ℤ) = m.times(n)

• What bracketing operators actually mean
 opr x:ℝ = ceiling(x)

 opr |x:ℝ| = if x<0 then -x else x end

 opr |s:Set| = s.size

Parallel Programming and Parallel Abstractions in Fortress

20© 2006 Sun Microsystems, Inc. All rights reserved.

But Wasn’t Operator Overloading
a Disaster in C++ ?

• Yes, it was
> Not enough operators to go around
> Failure to stick to traditional meanings

• We have also been tempted and had to resist
• We believe Unicode + discipline can avert disaster

• We see benefits in using notations for programming
that are also used for specification

Parallel Programming and Parallel Abstractions in Fortress

21© 2006 Sun Microsystems, Inc. All rights reserved.

Simple Example: NAS CG Kernel (ASCII)

conjGrad(A: Matrix[/Float/], x: Vector[/Float/]):
 (Vector[/Float/], Float)
 cgit_max = 25
 z: Vector[/Float/] := 0
 r: Vector[/Float/] := x
 p: Vector[/Float/] := r
 rho: Float := r^T r
 for j <- seq(1:cgit_max) do
 q = A p
 alpha = rho / p^T q
 z := z + alpha p
 r := r - alpha q
 rho0 = rho
 rho := r^T r
 beta = rho / rho0
 p := r + beta p
 end
 (z, ||x – A z||)

(z,norm) = conjGrad(A,x)

Matrix[/T/] and Vector[/T/] are
parameterized interfaces, where
T is the type of the elements.

The form x:T:=e declares a variable x
of type T with initial value e, and
that variable may be updated using
the assignment operator :=.

Parallel Programming and Parallel Abstractions in Fortress

22© 2006 Sun Microsystems, Inc. All rights reserved.

Simple Example: NAS CG Kernel (ASCII)

conjGrad[/Elt extends Number, nat N,
 Mat extends Matrix[/Elt,N BY N/],
 Vec extends Vector[/Elt,N/]
 /](A: Mat, x: Vec): (Vec, Elt)
 cgit_max = 25
 z: Vec := 0
 r: Vec := x
 p: Vec := r
 rho: Elt := r^T r
 for j <- seq(1:cgit_max) do
 q = A p
 alpha = rho / p^T q
 z := z + alpha p
 r := r - alpha q
 rho0 = rho
 rho := r^T r
 beta = rho / rho0
 p := r + beta p
 end
 (z, ||x – A z||)

(z,norm) = conjGrad(A,x)

Here we make conjGrad a generic
procedure. The runtime compiler
may produce multiple instantiations
of the code for various types E.

The form x=e as a statement declares
variable x to have an unchanging
value. The type of x is exactly the
type of the expression e.

Parallel Programming and Parallel Abstractions in Fortress

23© 2006 Sun Microsystems, Inc. All rights reserved.

Simple Example: NAS CG Kernel (Unicode)

 conjGrad[[Elt extends Number, nat N,
 Mat extends Matrix[[Elt,NN]],
 Vec extends Vector
]](A: Mat, x: Vec): (Vec, Elt)
 cgit_max = 25
 z: Vec := 0
 r: Vec := x
 p: Vec := r
 ρ: Elt := r^T r
 for j ← seq(1:cgit_max) do
 q = A p
 α = ρ / p^T q
 z := z + α p
 r := r - α q
 ρ₀ = ρ
 ρ := r^T r
 β = ρ / ρ₀
 p := r + β p
 end
 (z, ‖x - A z‖)

This would be considered entirely
equivalent to the previous version.
You might think of this as an abbre-
viated form of the ASCII version, or
you might think of the ASCII version
as a way to conveniently enter this
version on a standard keyboard.

Parallel Programming and Parallel Abstractions in Fortress

24© 2006 Sun Microsystems, Inc. All rights reserved.

Simple Example: NAS CG Kernel

conjGrad 〚Elt extends Number, nat N, 〛

Mat extends Matrix〚Elt,N×N 〛 ,
Vec extends Vector 〚Elt, N〛

〚 〛A :Mat, x : Vec:Vec, Elt 
cgitmax= 25
z : Vec := 0
r : Vec := x
p : Vec := r
 :Elt := rT r
for j  seq 1:cgitmax do
q = A p

 =

pTq

z := z p
r := r−q
0= 
 := rT r

 =

0

p := r p
end
 z , ∥x−A z∥

It's not new or surprising that code
written in a programming language
might be displayed in a conventional
math-like format. The point of this
example is how similar the code is to
the math notation: the gap between
the two syntaxes is relatively small.
We want to see what will happen if
a principal goal of a new language
design is to minimize this gap.

Parallel Programming and Parallel Abstractions in Fortress

25© 2006 Sun Microsystems, Inc. All rights reserved.

Comparison: NAS NPB 1 Specification
z = 0
r = x
= rT r
p = r
DO i= 1,25

q = A p
 = / pT q
z = z p
0= 
r = r−q
= rT r
 = /0

p = r p
ENDDO
compute residual norm explicitly: ∥r∥=∥x−A z∥

z : Vec := 0
r : Vec := x
p : Vec := r
 :Elt := rT r
for j  seq 1:cgitmax do
q = A p

 =

pTq

z := z p
r := r−q
0= 
 := rT r

=

0

p := r p
end
 z , ∥x−A z∥

Parallel Programming and Parallel Abstractions in Fortress

26© 2006 Sun Microsystems, Inc. All rights reserved.

Comparison: NAS NPB 2.3 Serial Code
 do j=1,lastrow-firstrow+1
 sum = 0.d0
 do k=rowstr(j),rowstr(j+1)-1
 sum = sum + a(k)*z(colidx(k))
 enddo
 w(j) = sum
 enddo
 do j=1,lastcol-firstcol+1
 r(j) = w(j)
 enddo
 sum = 0.0d0
 do j=1,lastcol-firstcol+1
 d = x(j) - r(j)
 sum = sum + d*d
 enddo
 d = sum
 rnorm = sqrt(d)

 do j=1,naa+1
 q(j) = 0.0d0
 z(j) = 0.0d0
 r(j) = x(j)
 p(j) = r(j)
 w(j) = 0.0d0
 enddo
 sum = 0.0d0
 do j=1,lastcol-firstcol+1
 sum = sum + r(j)*r(j)
 enddo
 rho = sum
 do cgit = 1,cgitmax
 do j=1,lastrow-firstrow+1
 sum = 0.d0
 do k=rowstr(j),rowstr(j+1)-1
 sum = sum + a(k)*p(colidx(k))
 enddo
 w(j) = sum
 enddo
 do j=1,lastcol-firstcol+1
 q(j) = w(j)
 enddo

 do j=1,lastcol-firstcol+1
 w(j) = 0.0d0
 enddo
 sum = 0.0d0
 do j=1,lastcol-firstcol+1
 sum = sum + p(j)*q(j)
 enddo
 d = sum
 alpha = rho / d
 rho0 = rho
 do j=1,lastcol-firstcol+1
 z(j) = z(j) + alpha*p(j)
 r(j) = r(j) - alpha*q(j)
 enddo
 sum = 0.0d0
 do j=1,lastcol-firstcol+1
 sum = sum + r(j)*r(j)
 enddo
 rho = sum
 beta = rho / rho0
 do j=1,lastcol-firstcol+1
 p(j) = r(j) + beta*p(j)
 enddo
 enddo

Parallel Programming and Parallel Abstractions in Fortress

27© 2006 Sun Microsystems, Inc. All rights reserved.

Parallelism Is Not a Feature!

• Parallel programming is not a goal,
but a pragmatic compromise.

• It would be a lot easier to program a single
processor chip running at 1 PHz than a million
processors running at 20 GHz.
> We don't know how to build a 1 Phz processor.
> Even if we did, someone would still want to strap

a bunch of them together!

• Parallel programming is difficult and error-prone.

Parallel Programming and Parallel Abstractions in Fortress

28© 2006 Sun Microsystems, Inc. All rights reserved.

Questions

Can we encapsulate parallelism in libraries?

Will this separation be effective?

Parallel Programming and Parallel Abstractions in Fortress

29© 2006 Sun Microsystems, Inc. All rights reserved.

Should Parallelism Be the Default?

• “Loop” can be a misleading term
> A set of executions of a parameterized block of code
> Whether to order or parallelize those executions

should be a separate question

• Fortress “loops” are parallel by default
> This is actually a library convention about generators
> You get sequential execution by asking for it specifically

Parallel Programming and Parallel Abstractions in Fortress

30© 2006 Sun Microsystems, Inc. All rights reserved.

In Fortress, Parallelism Is the Default
for i←1:m, j←1:n do
 a[i,j] := b[i] c[j]
end

for i←seq(1:m) do
 for j←seq(1:n) do
 print a[i,j]
 end
end

for i←1:m, j←i:n do
 a[i,j] := b[i] c[j]
end

for (i,j)←a.indices do a[i,j] := b[i] c[j] end

for (i,j)←a.indices.rowMajor do print a[i,j] end

• Generators (defined by libraries) manage parallelism
and the assignment of threads to processors

1:n is a generator

seq(1:n) is a sequential generator

a.indices is a generator for
the indices of the array a

a.indices.rowMajor is
a sequential generator of indices

Parallel Programming and Parallel Abstractions in Fortress

31© 2006 Sun Microsystems, Inc. All rights reserved.

Generators and Reducers

 y = ∑[k<-1:n] a[k] x^k

 z = MAX[(j,k)<-a.indices] |a[j,k]-b[j,k]|

• Reducers (also defined by libraries) such as ∑ (or SUM)
and MAX may have serial/parallel implementations

• Reducers are driven by generators
• Distribution of generator guides parallelism of reducer

y= ∑
k1:n

ak x
k

z= MAX
 j , k a.indices

∣a j , k−b j , k∣

Parallel Programming and Parallel Abstractions in Fortress

32© 2006 Sun Microsystems, Inc. All rights reserved.

Kinds of Generators

• Aggregates
> Lists 1,2,4,3,4 and vectors [1 2 4 3 4]
> Sets {1,2,3,4} and multisets {|1,2,3,4,4|}
> Arrays (including multidimensional)

• Ranges 1:10 and 1:99:2 and 5#20
• Index sets a.indices and a.indices.rowMajor
• Index-value sets of maps ht.keyValuePairs

Parallel Programming and Parallel Abstractions in Fortress

33© 2006 Sun Microsystems, Inc. All rights reserved.

Loops, Reducers, Comprehensions

for k1:n do print k end
y= ∑

k 1:n

ak x
k

w=∑ S (* same as ∑
xS

x *)

v= ∩
kS
prime k

arrayOfSetsk

z= MAX
 j , k a.indices

∣a j , k−b j , k∣
B={ f  x , y∣ x S , y A , x≠ y}
l triangle=〈 x x1

2 ∣ x1:100〉

Parallel Programming and Parallel Abstractions in Fortress

34© 2006 Sun Microsystems, Inc. All rights reserved.

Loops, Reducers, Comprehensions

for k←1:n do print i end

y = ∑[k←1:n] a[k] x^k

w = ∑S (* same as ∑[x←S] x *)

v = ∩[k←S, prime k] arrayOfSets[k]

z = MAX[(j,k)←a.indices] |a[j,k]-b[j,k]|

B = { f(x,y) | x←S, y←A, x≠y }

l_triangle =  x(x+1)/2 | x←1:100 

Parallel Programming and Parallel Abstractions in Fortress

35© 2006 Sun Microsystems, Inc. All rights reserved.

Abstract Collections

Aggregate
Range
Index set

Optimized generator-reduction

Result

Generator
protocol

Reduction
protocol

G

Aggregate
Range
Index set

Result

Abstract
collection

Parallel Programming and Parallel Abstractions in Fortress

36© 2006 Sun Microsystems, Inc. All rights reserved.

Representation of Abstract Collections

Binary operator ◊
Leaf operator (“unit”) □
Optional empty collection (“zero”) ε

that is the identity for ◊

◊1 ε

◊ ◊

◊

4

32

◊
1 ◊

◊

4

32

Parallel Programming and Parallel Abstractions in Fortress

37© 2006 Sun Microsystems, Inc. All rights reserved.

Algebraic Properties of ◊
Associative Commutative Idempotent

no no no binary trees
no no yes weird
no yes no mobiles
no yes yes weird
yes no no lists
yes no yes weird
yes yes no multisets
yes yes yes sets

The “Boom hierarchy”

Parallel Programming and Parallel Abstractions in Fortress

38© 2006 Sun Microsystems, Inc. All rights reserved.

Associativity

1

◊ ◊

◊

432

◊
1

◊

2

4

3

◊
1 ◊

4

32

◊

◊

◊
1

◊

2

43

◊

◊

ε

◊

1

◊

2

4

3

◊

◊

ε These are all considered
to be equivalent.

Parallel Programming and Parallel Abstractions in Fortress

39© 2006 Sun Microsystems, Inc. All rights reserved.

Catamorphism: Summation

◊

1

◊

2

4

3

◊

◊

ε

Replace ◊ □ ε with + identity 0

+

1

+

2

4

3

+

+

0

10

Parallel Programming and Parallel Abstractions in Fortress

40© 2006 Sun Microsystems, Inc. All rights reserved.

Catamorphism: Lists

1

◊ ◊

◊

432 1

append

Replace ◊ □ ε with append – 

append

append

2 3 4

1,2,3,4

Parallel Programming and Parallel Abstractions in Fortress

41© 2006 Sun Microsystems, Inc. All rights reserved.

Catamorphism: Splicing Linked Lists
Replace ◊ □ ε with conc unitList nil

unitList: x

x

. . .a d . . .e hf

. . .a d . . .e hf

conc:

(At the end, use the left-hand
pointer of the final pair.)

Parallel Programming and Parallel Abstractions in Fortress

42© 2006 Sun Microsystems, Inc. All rights reserved.

Catamorphism: Loops

print 1

par

Replace ◊ □ ε with seq identity () or par identity ()
where seq: (),() → () and par: (),() → ()

print 2 print 3

par

print 4

par

()

seq

print 1

seq

print 2

seq

print 3

seq

print 4

Parallel Programming and Parallel Abstractions in Fortress

43© 2006 Sun Microsystems, Inc. All rights reserved.

Desugaring

∑[i←a,j←b,p,k←c] e becomes ∑(f)

 e | i←a,j←b,p,k←c  becomes List(f)

for i←a,j←b,p,k←c do e end becomes For(f)

where f =
 (fn (r)=>
 (a).generate(r, fn (i)=>
 (b).generate(r, fn (j)=>
 (p).generate(r, fn ()=>
 (c).generate(r, fn (k)=>
 r.unit(e))))))

Note: generate method can be overloaded!

Parallel Programming and Parallel Abstractions in Fortress

44© 2006 Sun Microsystems, Inc. All rights reserved.

Implementation
opr ∑[\T\](f: Catamorphism[\T,T\]→T): T
 where { T extends Monoid[\T,+\] } =
 f(Catamorphism(fn(x,y)=> x+y, identity, 0))

List[\T\](f: Catamorphism[\T,List[\T\]\]
 →List[\T\]): List[\T\] =
 f(Catamorphism(append, fn(x)=> x, ))

List[\T\](f: Catamorphism[\T,List[\T\]\]
 →List[\T\]): List[\T\] =
 f(Catamorphism(conc, unitList, nil)).first

For(f: Catamorphism[\(),()]→()): () =
 f(Catamorphism(par, identity, ()))

Parallel Programming and Parallel Abstractions in Fortress

45© 2006 Sun Microsystems, Inc. All rights reserved.

Regions

• Hierarchical data structure describes CPU and
memory resources and their properties
> Allocation heaps
> Parallelism
> Memory coherence

• A running thread can
find out its resources

• Threads may be
explicitly spawned
in specified regions

Cluster

Node

Chip

Core

NodeNodeNode

ChipChip

Core

Parallel Programming and Parallel Abstractions in Fortress

46© 2006 Sun Microsystems, Inc. All rights reserved.

Distributions

• Describe how to map a data structure onto a region
> Block, cyclic, block-cyclic, Morton order ...
> Map an array into a chip? Use a local heap.
> Map an array onto a cluster? Break it up.

• Defined entirely by libraries!
> User-extensible

1
2
3

4
5
6 9

7
8

10
11
12

Parallel Programming and Parallel Abstractions in Fortress

47© 2006 Sun Microsystems, Inc. All rights reserved.

Generators Drive Parallelism

par

seq

1

2

3

ε

seq

seq

seq

4

5

6

ε

seq

seq

par

seq

7

8

9

ε

seq

seq

seq

12

ε

seq

seq

par

11

10

1
2
3

4
5
6 9

7
8

10
11
12

When a data structure
(or its index set) is
used as a generator,
the parallelism of the
generator reflects
the distribution of
the data structure.

Parallel Programming and Parallel Abstractions in Fortress

48© 2006 Sun Microsystems, Inc. All rights reserved.

Generators Modify Reducers:
Parallelism

1
2
3

4
5
6 9

7
8

10
11
12 +par

+seq

1

2

3

0

+seq

+seq

+seq

4

5

6

0

+seq

+seq

+par

+seq

7

8

9

0

+seq

+seq

+seq

12

0

+seq

+seq

+par

11

10

∑A
A

This works because integer
addition is associative.
The generator knows this
because the trait ℤ
extends the trait
Associative[[ℤ,+]].

Parallel Programming and Parallel Abstractions in Fortress

49© 2006 Sun Microsystems, Inc. All rights reserved.

Generators Modify Reducers:
Distribution

1
2
3

4
5
6 9

7
8

10
11
12

[x(x+1)/2 | x←A]

1
3
6

55
66
78

28
36
45

10
15
21

Generators and reducers may
agree to use a specialized
protocol that, for example,
communicates array shapes
and distribution information.

A

Parallel Programming and Parallel Abstractions in Fortress

50© 2006 Sun Microsystems, Inc. All rights reserved.

More Desugaring

[e | i←a,j←b,p,k←c][d] becomes Array(f,d)

[e | i←a,j←b,p,k←c]^C becomes C(f)

[e | i←a,j←b,p,k←c]^C[d] becomes C(f,d)

This lets us specify a distribution explicitly as a subscript,
and/or a type constructor/catamorphism as a superscript.

[x  x1/2 ∣ x←1:n]blockCyclic4

[x ∣ x0]Maybe

Parallel Programming and Parallel Abstractions in Fortress

51© 2006 Sun Microsystems, Inc. All rights reserved.

Example: Lexicographic Comparison

• Assume a binary CMP operator that returns one of
Less, Equal, or Greater

• Now consider the binary operator LEXICO:
LEXICO Less Equal Greater
Less Less Less Less
Equal Less Equal Greater
Greater Greater Greater Greater

> Associative (but not commutative)
> Equal is the identity
> Less and Greater are left zeroes

Parallel Programming and Parallel Abstractions in Fortress

52© 2006 Sun Microsystems, Inc. All rights reserved.

Algebraic Properties of LEXICO
trait Comparison extends {

 IdentityEquality[[Comparison]],

 Associative[[Comparison,LEXICO]],

 HasRightIdentity[[Comparison,LEXICO,Equal]],

 HasLeftZeroes[[Comparison,LEXICO]]

 }

 ...

 test { Less, Equal, Greater }

end

A generator that detects the LEXICO catamorphism (rather, the
fact that it has left zeros) can choose to generate special code.

Parallel Programming and Parallel Abstractions in Fortress

53© 2006 Sun Microsystems, Inc. All rights reserved.

Zeroes Can Stop Iteration Early

1 2

4

3

×

×

×

×

×

7

0

DONE!

Equal Equal

Less

Equal

Equal

Greater

DONE!

LEXICO

LEXICO

LEXICO

LEXICO

LEXICO

Parallel Programming and Parallel Abstractions in Fortress

54© 2006 Sun Microsystems, Inc. All rights reserved.

Code for Lexicographic Comparison
trait LexOrder[[T,E]]
 extends { TotalOrder[[T,≤,CMP]],
 Indexable[[LexOrder[[T,E]],E]] }
 where { T extends LexOrder[[T,E]],
 E extends TotalOrder[[T,≤,CMP]] }

 opr =(self,other:T):Boolean =
 |self| = |other| AND:
 AND[i←self.indices] self[i]=other[i]

 opr CMP(self,other:T):Comparison = do
 prefix = self.indices ∩ other.indices
 (LEXICO[i←prefix] self[i] CMP other[i]) &
 LEXICO (|self| CMP |other|)
 end

 opr ≤(self,other:T):Boolean =
 (self CMP other) ≠ Greater

end

Parallel Programming and Parallel Abstractions in Fortress

55© 2006 Sun Microsystems, Inc. All rights reserved.

String Comparison

trait String

 extends { LexOrder[[String,Character]], ... }

 ...

 test { “foo”, “foobar”, “quux”, “” }

 property “” < “foo” < “foobar”

end

Parallel Programming and Parallel Abstractions in Fortress

56© 2006 Sun Microsystems, Inc. All rights reserved.

Summary: Parallelism in Fortress

• Regions describe machine resources.
• Distributions map aggregates onto regions.
• Aggregates used as generators drive parallelism.
• Algebraic properties drive implementation strategies.
• Algebraic properties are described by traits.
• Properties are verified by automated unit testing.
• Traits allow sharing of code, properties, and test data.
• Reducers and generators negotiate through

overloaded method dispatch keyed by traits
to achieve mix-and-match code selection.

Carl Eastlund, Guy Steele, Jan-Willem Maessen, Yossi Lev, Eric Allen,
Joe Hallett, Sukyoung Ryu, Sam Tobin-Hochstadt, David Chase, João Dias

guy.steele@sun.com

http://research.sun.com/projects/plrg

