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Abstract: The paper presents a solution to the dynamic DAG scheduling problem in Grid 

environments. It presents a distributed, scalable, efficient and fault-tolerant algorithm for 

optimizing tasks assignment. The scheduler algorithm for tasks with dependencies uses a 

heuristic model to optimize the total cost of tasks execution. Also, a method based on 

genetic algorithms is proposed to optimize the procedure of resources assignment. The 

experiments used the MonALISA monitoring environment and its extensions. The results 

demonstrate very good behavior in comparison with other scheduling approaches for this 

kind of DAG scheduling algorithms. 
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1. INTRODUCTION 

 

Grid is the subject of many international research 

projects in Europe (for example EGEE, SEE-GRID, 

etc.) and in US (e.g. OSG). One of the main actual 

requirements is finding solutions for efficient and high 

performance execution of applications that are 

computing intensive, data intensive or a combination of 

both. The answers include breaking the problem into 

smaller pieces, which means partitioning the jobs into 

smaller tasks, discovery of available services and 

resources, scheduling tasks and workflows and 

distributing them to specific system nodes, providing 

the data where and when they are required, collecting 

results and giving them to the interested user. In 

addition, execution management assists the decision 

processes in the Grid environments, which are based on 

autonomic features such as self-configuration, self-

optimization, self-recovery, and self-management 

(Joshy et al, 2004). 

 

The number of clusters in the global Grid, the 

heterogeneity of resources and the complexity of the 

applications require an efficient Grid scheduling 

solution. The Grid scheduler should cope with receiving 

job execution requests from users, receiving 

information about the available resources / services, and 

mapping the application to resources and services 

according to some optimization criteria. Several 

problems are related with this approach. 

 

First, a Grid scheduler cannot control the 

clusters/resources directly. It is more natural to consider 

that Grid schedulers are closely related to Grid 

applications, and are responsible for the management of 

jobs, such as allocating resources needed for any 

specific job, managing the tasks for parallel execution, 

managing of data, and correlation of events. One 

solution is to  view Grid scheduling as a Web Service, 

which uses other Web Services (for example a Grid 

Information Service) to fulfill its function. This solution 

has several advantages. First, it can support a more 

complex utilization of Grids, such as the coordinated 

resource sharing, and execution cost optimizations for 

applications. Then, Grid applications can achieve levels 

of flexibility utilizing infrastructures provided by 

middleware frameworks that use the web services 

concept. Globus Toolkit 4 is the most known 

implementation of a flexible web services framework 

(Foster, 2005) for Grid applications. Using this 

framework it is possible to create scheduling services 

for all type of applications and for large Virtual 



     

Organizations as well. The LHC physics project (for 

nuclear physics experiments) provides the main 

applications for Grid (LCG, 2007). LCG (LHC 

Computing Grid) which is based on Globus are the 

main middleware used in LHC. 

 

Second, the partition of a job into tasks can lead to 

dependent tasks. Obviously, this asks for the design and 

use of more complex scheduling algorithms. 

 

Third, more than one single criterion could be required 

for scheduling optimization. New approaches could be 

needed to accommodate such claims. 

 

In this paper we present a method for optimizing the 

scheduling mechanism for dependent tasks. The paper 

is structured as follows: Section 2 is a general 

presentation of the task DAG Scheduling methods and 

open issues. Section 3 describes the structure and 

functionality of the proposed solution. Section 4 

introduces the main implementation issues. We describe 

and comment on the results in the 5th section. Section 6 

contains conclusions and directions for future research. 

 

 

2. GENERAL PRESENTATION OF THE DAG OF 

TASKS SCHEDULING 

 

As mentioned above, partitioning a job into tasks can 

lead to dependent tasks. A dependent task cannot start 

before the execution of the tasks it depends on is 

terminated. To represent a set of task and their 

dependencies we can use a directed acyclic graph 

(DAG) where the tasks are represented by nodes and 

the dependencies are represented by arcs. If starting the 

execution of the task B depends on terminating the 

execution of the task A then an arc (directed edge) from 

A to B exists in the associated DAG. Obviously, one 

task may depend on several other tasks.  

 

Tasks' dependencies have a major role in the design of 

scheduling algorithms. The taxonomy of Grid 

scheduling algorithms for dependent tasks is shown in 

Figure 1 (Dong et al, 2006). In the sequel, by DAG 

scheduling we denote the scheduling of tasks with 

dependencies. 

 

  

2.1. Properties of the DAG scheduling problem 

 

The general DAG scheduling problem is NP-complete 

(Yu-Kwok et al 1997, 1999, Kohler et al, 1976). An 

approximation algorithm could aim to provide a 

polynomial time solution for some particular cases. 

 

One case is that of a tree-structured graph with identical 

computation costs for the tasks. A linear time solution 

exists for scheduling these tasks on an arbitrary number 

of processor. (Hu, 1961). 

 

Another case is to schedule arbitrary graphs with 

identical task computation costs, on two processors. 

Grid scheduling algorithms for

Task dependency

Independent task

Static

Dynamic

Dependent task

List Algorithms

Cluster Algorithms

Duplication-based 

Algorithms

Static

Dynamic

Static Enhanced by 

Dynamic Rescheduling  

Figure 1. Taxonomy of task dependency scheduling 

algorithms in Grid environments 

 

The solution is a quadratic-time algorithm (Coffman et 

al, 1972). 

 

The third case we mention is the scheduling of the 

interval-ordered DAG with uniform node weights to an 

arbitrary number of processors. Again, a linear time 

solution exists for this case (Papadimitroiu et al, 1979). 

 

 

2.2. Background of DAG scheduling problem 

 

A task graph is a directed acyclic graph )( τc,E,V,G  

where: 

 - V is a set of nodes (tasks);  

 - E is a set of directed edge (dependencies);  

 -  RVc :  is a function that associates a weight 

c(u) to each node Vu ; )(uc  represent the execution 

time of the task Tu, which is represented by the node u 

in V; 

 - τ is a function  RE:  that associates a weight 

to a directed edge; if u and v are two nodes in V then 

),( vuτ  denotes the inter-tasks communication time 

between Tu and Tv. 

 

A task graph example is shown in Figure 2. Two special 

kinds of nodes can be identified. A source node is a 

node without incoming directed edges. It corresponds to 

the task that initiate the entire application, and it is the 

first task in any possible schedule. An exit node is a 

node without outgoing directed edges. Two items are 

associated with each node: the task id Tu is represented 

in the upper half of the node (circle), while the 

execution time c(u) is represented in the lower half. 

Each edge is labeled with the inter-tasks 

communication time.  



     

 

If we denote st(u) the start time and ft(u) the finish time 

for task u, and define 

 

  uftmakespan
Vu

 max , 

 

we can formulate the goal of optimizing DAG 

scheduling as follows: minimize the makespan without 

violating precedence constrains. 

 

A scheduler is considered efficient if the makespan is 

short and respects resource constrains, such as a limited 

number of processors, memory capacity, available disk 

space, etc. 

 

Many types of scheduling algorithms for DAG are 

based on the list scheduling technique. Each task has an 

assigned priority, and scheduling is done according to a 

list priority policy: select the node with the highest 

priority and assign it to a suitable machine. According 

to this policy, two attributes are used for assigning 

priorities: 

 - tlevel (top-level) for a node u is the weight of the 

longest path from the source node to u. 

 - blevel (bottom-level) for a node u is the weight of 

the longest path from u to an exit node.  

The time-complexity for computing tlevel and blevel is 

O(|V|+|E|). 

 

We define the ALAP (As Late As Possible) attribute for 

a node u to measure how far the node’s start-time, st(u) 

can be delayed without increasing the makespan. This 

attribute will have an important role for load balancing 

constrains because it show if we can delay the 

execution start of a task Tu. 
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Figure 2. Task DAG Example 

 

For the example in Figure 2, the tlevel, blevel and ALAP 

parameters are presented in Table 1. For the node 1 

(task T1) the tlevel is 0. It means that this node must be 

scheduled and executed without any time delay. The 

blevel is 23 and denotes the makspan for this graph. For 

the node 9 (task T9) the ALAP is 22 (the maximum time 

before task 9 ca start the execution). 

 

Table 1. The tlevel, blevel and ALAP for Figure 2 

graph example 

 

 Node tlevel blevel ALAP 

 

 1 0 23 0 

 2 6 15 8 

 3 3 14 9 

 4 3 15 8 

 5 3 5 18 

 6 10 10 13 

 7 12 11 12 

 8 8 10 13 

 9 22 1 22 

 

 

3. HEURISTIC MODEL BASED ON GENETIC 

ALGORITHMS FOR GRID SYSTEMS 

 

Grid scheduling for DAG task dependencies involves 

the main phases specified in (Schopf, 2003) to which 

we added the new DAG tasks scheduling phase that 

prepares the tasks for submission. 

 

 Resources discovery. This phase generates a 

list of potential resources with corresponding 

specifications (available number of processors, 

free memory or free disk etc.). In this phase it 

is possible to make resource reservations (this 

is one of the particularities used in grid 

economy model). For task scheduling the 

resource characteristics are important because 

they permit the allocation of several tasks on 

the same resource (e.g. one cluster) if the 

resource characteristics allow this. These 

recourse parameters are provided by the Grid 

Information System (GIS). 

 

 DAG tasks scheduling. In this phase, the tasks 

are prepared for submission to different 

systems in Grid. 

 

 System selection. In this phase the best set of 

resources are selected from the sets of 

resources obtained in the first phase. 

 

 Job execution. The tasks are mapped to the 

selected resources and are submitted for 

execution. 

 

The algorithms based on makespan minimization 

heuristic are the ones giving the best results. The main 

purpose is to provide a lower bound for makespan. To 

this respect, each task is assigned the earliest possible 

time to start the execution. This is the best solution for 

the List algorithms class (see Figure 1). 

 

But, during the execution, the makespan can change 

due to modifications in the order of task executions 

and/or to changes in inter-task communication times. 

This scenario describes a dynamic algorithm.  



     

A dynamic algorithm is CCF (Cluster ready Children 

First). In this algorithm the graph is visited in 

topological order, and tasks are submitted as soon as 

scheduling decisions are taken (Forti A., 2006). 

 

In the CCF algorithm, when a task is submitted for 

execution it is inserted into RUNNING-QUEUE (see 

Figure 3). If a task is extracted from the RUNNING-

QUEUE, all its successors are inserted into the 

CHILDREN-QUEUE. These queues can be priority 

queues where the priority is assigned based on tlevel 

and blevel parameters. For example the priority for each 

task can depend on the tlevel(u) + blevel(u) factor. 

 

The outline of the CCF algorithm is presented bellow 

(in this algorithm deq is dequeue operation and enq is 

the operation enqueue). 

 

 

computes tlevel and blevel for each node; 

 

insert source task into RUNNING-QUEUE;  

 

while (! isEmpty (RUNNING-QUEUE)) 

 

 task = deq (RUNNING-QUEUE); 

 

 for-each child of task do 

   enq (child, CHILDREN-QUEUE); 

 end for 

  

 while (! isEmpty (CHILDREN-QUEUE)) 

   

  child_task = deq (CHILDREN-QUEUE); 

 

  if (isReady (child_task)) then 

 

          assignResource (child_task); 

          updateResources (child_task); 

          enq (child_task, RUNNING-QUEUE); 

 

  else 

           suggestedResources (child_task); 

  end if 

 

 end while 

end while 

 

 

In Figure 3, the Monitoring System is the goal of the 

updateResource function. This goal can be achieved 

through using a monitoring system (e.g. MonALISA, 

Ganglia etc.), and a good scheduling strategy applied to 

the local level (clusters) and global level (entire system) 

of Grids. (Pop F. et al, 2006). The monitoring system 

can offer information on tasks execution in the Grid 

environment (Grid Clusters) as a feed-back to 

scheduler. 

 

The central part of the algorithm is the assignResource 

function. This function considers two important aspects: 

- the set of candidate resources composed by the 

resource assigned by the initial static mapping 

of tasks, the resources of the task parents, and 

one suggested resource; 

- the scheduling target, which is to minimize the 

cost function. 

 

SCHEDULER

CHILDREN-QUEUE

RUNNING-QUEUE

updateResource assignResourcesuggestResource

DAG 

Tasks

Monitoring System

Grid Clusters

 

Figure 3. Scheduler Architecture 

 

The resources assigned can be determined for the 

RUNNING-QUEUE (this queue contains tasks without 

dependencies) under the constraints of cost that have to 

be minimized. 

 

 

4. OPTIMIZATION METHOD FOR DAG TASKS 

SCHEDULING ALGORITHM 

 

We propose a method based on genetics algorithms for 

resources assignment. This method (Iordache et al, 

2006) uses genetic algorithms (GAs) to compute a 

fitness function for each task and schedule the set of 

tasks using these values. We proposed and implemented 

this method for the assignResource function in the CCF 

algorithm.  

 

The description of the scheduling method is presented 

in the following, in a logical flow of activities: 

 

 A user requests that one task is scheduled. This 

request has as a parameter the name of the file 

containing a description of the tasks. The file has a 

standard XML format and presents task 

requirements related to memory, processor usage, 

execution time, etc. 

 The input file is processed and a “batch of tasks” 

(group of tasks) objects is constructed for 

independent task from RUNNING-QUEUE. 

 The batch of tasks is broadcast to all the nodes in 

the cluster. 

 The nodes receive the group of tasks to be 

scheduled. The tasks are inserted in a queue by its 

priority according to a fitness function. If the 

number of tasks in the queue is less than a 



     

predefined length of the chromosome (in the 

solution, a fixed length of chromosome is used), 

they wait for T units of time before starting the 

genetic algorithm. If the chromosome is still not 

complete at the end of the waiting period, a non-

influential padding is added. On the contrary, if the 

length of an arriving group of tasks exceeds the 

predefined dimension of the chromosome, some 

tasks are saved in the waiting queue and will be 

scheduled at a latter time. 

 On each node, up-to-date information on the status 

of the computers in the Grid on which tasks is sent 

for execution is kept, by constantly queering a 

monitoring system. The nodes query the 

Monitoring System, at the beginning of the 

algorithm, to find out the current status of the Grid. 

 Each node starts with a different, specific 

initialization of the GA. The subsequent steps of 

the GA are similar for all the nodes in the cluster, 

and the same fitness formula is used. In this way, 

the clients will compute different optima from 

which the best one will be chosen. 

 The migration of the best current solutions is 

performed after each step of the GA, thus ensuring 

that the population finds a optimal solution. The 

nodes exchange the best individuals and include 

them in the next generation. 

 The generation of populations ends after a finite, 

predefined number of steps. At this point, each 

client in the cluster computes its optimal solution. 

 The same communication procedure as above is 

used for the final step of the GA. Each node sends 

its optimum to all the other nodes in the cluster and 

the final optimal individual is decided by each of 

them. The best chromosome is selected from the 

optimal individuals. The result is the same on every 

node, because the computing procedure and the 

individuals at the last step of the GA are the same. 

 The scheduling obtained is saved in a history file on 

each node in the cluster. 

 

This is a distributed, fault-tolerant, scalable, and 

efficient solution of dynamic scheduling for optimized 

assignment of tasks from RUNNING-QUEUE or 

CHILDREN-QUEUE. The assignResource uses a 

combination of genetic algorithms and monitoring 

services for obtaining a scalable and highly reliable 

optimization tool. The monitoring system used is the 

MonALISA environment and its extensions. As we’ll 

see in the result section, the results highlight very good 

behaviour in comparison with other decentralized 

scheduling approaches. 

 

 

5. EXPERIMENTAL RESULTS 

 

The testing of CCF algorithm on the example in Figure 

2 led to the results presented in Figure 4. 

We compute the cost (c) of the task according to its 

requirements: needed memory, CPU speed (given in 

MIPS), etc. To obtain the inter-task communication 

time ( ) we have to retrieve the link characteristics 

(latency and bandwidth) using the formula: 

 

latency
bandwidth

sizedata


_
 . 

 

The communication computation ratio is defined as the 

average edge weight divided by the average node 

weight. 
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Figure 4. Result of CCF algorithm 

 

The experiment for the assignResource analyses the 

metrics discussed in a decentralized scheduling scenario 

(Iordache G. et al, 2006), in which a cooperative 

genetic strategy has been employed. The cooperative 

characteristic implies optimal individuals interchange in 

order to speed up convergence. The input task set is the 

same as previously, as well as the level of 

decentralization (3), and the number of generations 

(100). 

 
Figure 5. Comparison the completion time between two 

strategies for resource assignment 

 

Figure 5 illustrates the schedule obtained. An essential 

improvement of completion time has been achieved, 

namely an improvement of 16%, in comparison with 

the static strategy for assigning resources. This 

performance comparison of the proposed method and 

static assignment methods is made using tree processors 

(as we see in Figure 4). Tests were performed using a 

graph with nine tasks (example from figure 2). 

 

For the entire set of tasks (with dependencies) we 

obtained a good load balancing for processors if the 

communication time is low and the task dependencies 

have no many edges. A good load balancing is obtained 

if we consider only the task from RUNNING-QUEUE 

(with no dependencies). 



     

 

 

Figure 6. Completion time compare for 25 dependent 

tasks 

 

Finally, we tested the resource assignment for 25 

dependent tasks. The completion time is shown in 

Figure 6. An improvement of 16% for completion time 

has been achieved. 

 

 

6. CONCLUSIONS AND FUTURE WORK 

 

Task dependencies are more frequently encountered in 

Grid applications. Scheduling solutions for these cases 

are required under the constraints of QoS. We proposed 

a heuristic solution for existing DAG scheduling 

algorithm, namely: cluster ready, children first. The 

solution uses genetic algorithms for the resource 

assignment process. With this approach, we obtained a 

good improvement in QoS as compared with the static 

assignment method. 

 

The main contribution of this research is the use of an 

intelligent, heuristic method for optimizing Grid 

scheduling for DAG. Future work will consider: new 

scheduling algorithms for real-time scenarios, solutions 

for backup and recovery from error (re-scheduling), 

optimized file transfer, solving the problem of co-

scheduling, multi-criteria constrains scheduling. 

We also want to include this intelligent method for 

DAG scheduling in the DIOGENES (DIstributed 

Optimal GENEtic Algorithm for grid application 

Scheduling) project (DIO, 2007).   
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