

INTELLIGENT STRATEGIES FOR DAG SCHEDULING OPTIMIZATION

IN GRID ENVIRONMENTS

Florin Pop, Valentin Cristea

Faculty of Automatics and Computer Science, University “Politehnica” of Bucharest

{florinpop, valentin}@cs.pub.ro

Abstract: The paper presents a solution to the dynamic DAG scheduling problem in Grid

environments. It presents a distributed, scalable, efficient and fault-tolerant algorithm for

optimizing tasks assignment. The scheduler algorithm for tasks with dependencies uses a

heuristic model to optimize the total cost of tasks execution. Also, a method based on

genetic algorithms is proposed to optimize the procedure of resources assignment. The

experiments used the MonALISA monitoring environment and its extensions. The results

demonstrate very good behavior in comparison with other scheduling approaches for this

kind of DAG scheduling algorithms.

Keywords: Grid Computing, Task DAG Scheduling, Optimization, Genetics algorithms,

Heuristic model, Monitoring system.

1. INTRODUCTION

Grid is the subject of many international research

projects in Europe (for example EGEE, SEE-GRID,

etc.) and in US (e.g. OSG). One of the main actual

requirements is finding solutions for efficient and high

performance execution of applications that are

computing intensive, data intensive or a combination of

both. The answers include breaking the problem into

smaller pieces, which means partitioning the jobs into

smaller tasks, discovery of available services and

resources, scheduling tasks and workflows and

distributing them to specific system nodes, providing

the data where and when they are required, collecting

results and giving them to the interested user. In

addition, execution management assists the decision

processes in the Grid environments, which are based on

autonomic features such as self-configuration, self-

optimization, self-recovery, and self-management

(Joshy et al, 2004).

The number of clusters in the global Grid, the

heterogeneity of resources and the complexity of the

applications require an efficient Grid scheduling

solution. The Grid scheduler should cope with receiving

job execution requests from users, receiving

information about the available resources / services, and

mapping the application to resources and services

according to some optimization criteria. Several

problems are related with this approach.

First, a Grid scheduler cannot control the

clusters/resources directly. It is more natural to consider

that Grid schedulers are closely related to Grid

applications, and are responsible for the management of

jobs, such as allocating resources needed for any

specific job, managing the tasks for parallel execution,

managing of data, and correlation of events. One

solution is to view Grid scheduling as a Web Service,

which uses other Web Services (for example a Grid

Information Service) to fulfill its function. This solution

has several advantages. First, it can support a more

complex utilization of Grids, such as the coordinated

resource sharing, and execution cost optimizations for

applications. Then, Grid applications can achieve levels

of flexibility utilizing infrastructures provided by

middleware frameworks that use the web services

concept. Globus Toolkit 4 is the most known

implementation of a flexible web services framework

(Foster, 2005) for Grid applications. Using this

framework it is possible to create scheduling services

for all type of applications and for large Virtual

Organizations as well. The LHC physics project (for

nuclear physics experiments) provides the main

applications for Grid (LCG, 2007). LCG (LHC

Computing Grid) which is based on Globus are the

main middleware used in LHC.

Second, the partition of a job into tasks can lead to

dependent tasks. Obviously, this asks for the design and

use of more complex scheduling algorithms.

Third, more than one single criterion could be required

for scheduling optimization. New approaches could be

needed to accommodate such claims.

In this paper we present a method for optimizing the

scheduling mechanism for dependent tasks. The paper

is structured as follows: Section 2 is a general

presentation of the task DAG Scheduling methods and

open issues. Section 3 describes the structure and

functionality of the proposed solution. Section 4

introduces the main implementation issues. We describe

and comment on the results in the 5th section. Section 6

contains conclusions and directions for future research.

2. GENERAL PRESENTATION OF THE DAG OF

TASKS SCHEDULING

As mentioned above, partitioning a job into tasks can

lead to dependent tasks. A dependent task cannot start

before the execution of the tasks it depends on is

terminated. To represent a set of task and their

dependencies we can use a directed acyclic graph

(DAG) where the tasks are represented by nodes and

the dependencies are represented by arcs. If starting the

execution of the task B depends on terminating the

execution of the task A then an arc (directed edge) from

A to B exists in the associated DAG. Obviously, one

task may depend on several other tasks.

Tasks' dependencies have a major role in the design of

scheduling algorithms. The taxonomy of Grid

scheduling algorithms for dependent tasks is shown in

Figure 1 (Dong et al, 2006). In the sequel, by DAG

scheduling we denote the scheduling of tasks with

dependencies.

2.1. Properties of the DAG scheduling problem

The general DAG scheduling problem is NP-complete

(Yu-Kwok et al 1997, 1999, Kohler et al, 1976). An

approximation algorithm could aim to provide a

polynomial time solution for some particular cases.

One case is that of a tree-structured graph with identical

computation costs for the tasks. A linear time solution

exists for scheduling these tasks on an arbitrary number

of processor. (Hu, 1961).

Another case is to schedule arbitrary graphs with

identical task computation costs, on two processors.

Grid scheduling algorithms for

Task dependency

Independent task

Static

Dynamic

Dependent task

List Algorithms

Cluster Algorithms

Duplication-based

Algorithms

Static

Dynamic

Static Enhanced by

Dynamic Rescheduling

Figure 1. Taxonomy of task dependency scheduling

algorithms in Grid environments

The solution is a quadratic-time algorithm (Coffman et

al, 1972).

The third case we mention is the scheduling of the

interval-ordered DAG with uniform node weights to an

arbitrary number of processors. Again, a linear time

solution exists for this case (Papadimitroiu et al, 1979).

2.2. Background of DAG scheduling problem

A task graph is a directed acyclic graph)(τc,E,V,G

where:

 - V is a set of nodes (tasks);

 - E is a set of directed edge (dependencies);

 - RVc : is a function that associates a weight

c(u) to each node Vu ;)(uc represent the execution

time of the task Tu, which is represented by the node u

in V;

 - τ is a function RE: that associates a weight

to a directed edge; if u and v are two nodes in V then

),(vuτ denotes the inter-tasks communication time

between Tu and Tv.

A task graph example is shown in Figure 2. Two special

kinds of nodes can be identified. A source node is a

node without incoming directed edges. It corresponds to

the task that initiate the entire application, and it is the

first task in any possible schedule. An exit node is a

node without outgoing directed edges. Two items are

associated with each node: the task id Tu is represented

in the upper half of the node (circle), while the

execution time c(u) is represented in the lower half.

Each edge is labeled with the inter-tasks

communication time.

If we denote st(u) the start time and ft(u) the finish time

for task u, and define

 uftmakespan
Vu

 max ,

we can formulate the goal of optimizing DAG

scheduling as follows: minimize the makespan without

violating precedence constrains.

A scheduler is considered efficient if the makespan is

short and respects resource constrains, such as a limited

number of processors, memory capacity, available disk

space, etc.

Many types of scheduling algorithms for DAG are

based on the list scheduling technique. Each task has an

assigned priority, and scheduling is done according to a

list priority policy: select the node with the highest

priority and assign it to a suitable machine. According

to this policy, two attributes are used for assigning

priorities:

 - tlevel (top-level) for a node u is the weight of the

longest path from the source node to u.

 - blevel (bottom-level) for a node u is the weight of

the longest path from u to an exit node.

The time-complexity for computing tlevel and blevel is

O(|V|+|E|).

We define the ALAP (As Late As Possible) attribute for

a node u to measure how far the node’s start-time, st(u)

can be delayed without increasing the makespan. This

attribute will have an important role for load balancing

constrains because it show if we can delay the

execution start of a task Tu.

1

2

2

3

5

5

4

4

3

3

4 1

1 1

6

4

7

4

8

4

10

1 7 1

1

9

1

65 5

Figure 2. Task DAG Example

For the example in Figure 2, the tlevel, blevel and ALAP

parameters are presented in Table 1. For the node 1

(task T1) the tlevel is 0. It means that this node must be

scheduled and executed without any time delay. The

blevel is 23 and denotes the makspan for this graph. For

the node 9 (task T9) the ALAP is 22 (the maximum time

before task 9 ca start the execution).

Table 1. The tlevel, blevel and ALAP for Figure 2

graph example

 Node tlevel blevel ALAP

 1 0 23 0

 2 6 15 8

 3 3 14 9

 4 3 15 8

 5 3 5 18

 6 10 10 13

 7 12 11 12

 8 8 10 13

 9 22 1 22

3. HEURISTIC MODEL BASED ON GENETIC

ALGORITHMS FOR GRID SYSTEMS

Grid scheduling for DAG task dependencies involves

the main phases specified in (Schopf, 2003) to which

we added the new DAG tasks scheduling phase that

prepares the tasks for submission.

 Resources discovery. This phase generates a

list of potential resources with corresponding

specifications (available number of processors,

free memory or free disk etc.). In this phase it

is possible to make resource reservations (this

is one of the particularities used in grid

economy model). For task scheduling the

resource characteristics are important because

they permit the allocation of several tasks on

the same resource (e.g. one cluster) if the

resource characteristics allow this. These

recourse parameters are provided by the Grid

Information System (GIS).

 DAG tasks scheduling. In this phase, the tasks

are prepared for submission to different

systems in Grid.

 System selection. In this phase the best set of

resources are selected from the sets of

resources obtained in the first phase.

 Job execution. The tasks are mapped to the

selected resources and are submitted for

execution.

The algorithms based on makespan minimization

heuristic are the ones giving the best results. The main

purpose is to provide a lower bound for makespan. To

this respect, each task is assigned the earliest possible

time to start the execution. This is the best solution for

the List algorithms class (see Figure 1).

But, during the execution, the makespan can change

due to modifications in the order of task executions

and/or to changes in inter-task communication times.

This scenario describes a dynamic algorithm.

A dynamic algorithm is CCF (Cluster ready Children

First). In this algorithm the graph is visited in

topological order, and tasks are submitted as soon as

scheduling decisions are taken (Forti A., 2006).

In the CCF algorithm, when a task is submitted for

execution it is inserted into RUNNING-QUEUE (see

Figure 3). If a task is extracted from the RUNNING-

QUEUE, all its successors are inserted into the

CHILDREN-QUEUE. These queues can be priority

queues where the priority is assigned based on tlevel

and blevel parameters. For example the priority for each

task can depend on the tlevel(u) + blevel(u) factor.

The outline of the CCF algorithm is presented bellow

(in this algorithm deq is dequeue operation and enq is

the operation enqueue).

computes tlevel and blevel for each node;

insert source task into RUNNING-QUEUE;

while (! isEmpty (RUNNING-QUEUE))

 task = deq (RUNNING-QUEUE);

 for-each child of task do

 enq (child, CHILDREN-QUEUE);

 end for

 while (! isEmpty (CHILDREN-QUEUE))

 child_task = deq (CHILDREN-QUEUE);

 if (isReady (child_task)) then

 assignResource (child_task);

 updateResources (child_task);

 enq (child_task, RUNNING-QUEUE);

 else

 suggestedResources (child_task);

 end if

 end while

end while

In Figure 3, the Monitoring System is the goal of the

updateResource function. This goal can be achieved

through using a monitoring system (e.g. MonALISA,

Ganglia etc.), and a good scheduling strategy applied to

the local level (clusters) and global level (entire system)

of Grids. (Pop F. et al, 2006). The monitoring system

can offer information on tasks execution in the Grid

environment (Grid Clusters) as a feed-back to

scheduler.

The central part of the algorithm is the assignResource

function. This function considers two important aspects:

- the set of candidate resources composed by the

resource assigned by the initial static mapping

of tasks, the resources of the task parents, and

one suggested resource;

- the scheduling target, which is to minimize the

cost function.

SCHEDULER

CHILDREN-QUEUE

RUNNING-QUEUE

updateResource assignResourcesuggestResource

DAG

Tasks

Monitoring System

Grid Clusters

Figure 3. Scheduler Architecture

The resources assigned can be determined for the

RUNNING-QUEUE (this queue contains tasks without

dependencies) under the constraints of cost that have to

be minimized.

4. OPTIMIZATION METHOD FOR DAG TASKS

SCHEDULING ALGORITHM

We propose a method based on genetics algorithms for

resources assignment. This method (Iordache et al,

2006) uses genetic algorithms (GAs) to compute a

fitness function for each task and schedule the set of

tasks using these values. We proposed and implemented

this method for the assignResource function in the CCF

algorithm.

The description of the scheduling method is presented

in the following, in a logical flow of activities:

 A user requests that one task is scheduled. This

request has as a parameter the name of the file

containing a description of the tasks. The file has a

standard XML format and presents task

requirements related to memory, processor usage,

execution time, etc.

 The input file is processed and a “batch of tasks”

(group of tasks) objects is constructed for

independent task from RUNNING-QUEUE.

 The batch of tasks is broadcast to all the nodes in

the cluster.

 The nodes receive the group of tasks to be

scheduled. The tasks are inserted in a queue by its

priority according to a fitness function. If the

number of tasks in the queue is less than a

predefined length of the chromosome (in the

solution, a fixed length of chromosome is used),

they wait for T units of time before starting the

genetic algorithm. If the chromosome is still not

complete at the end of the waiting period, a non-

influential padding is added. On the contrary, if the

length of an arriving group of tasks exceeds the

predefined dimension of the chromosome, some

tasks are saved in the waiting queue and will be

scheduled at a latter time.

 On each node, up-to-date information on the status

of the computers in the Grid on which tasks is sent

for execution is kept, by constantly queering a

monitoring system. The nodes query the

Monitoring System, at the beginning of the

algorithm, to find out the current status of the Grid.

 Each node starts with a different, specific

initialization of the GA. The subsequent steps of

the GA are similar for all the nodes in the cluster,

and the same fitness formula is used. In this way,

the clients will compute different optima from

which the best one will be chosen.

 The migration of the best current solutions is

performed after each step of the GA, thus ensuring

that the population finds a optimal solution. The

nodes exchange the best individuals and include

them in the next generation.

 The generation of populations ends after a finite,

predefined number of steps. At this point, each

client in the cluster computes its optimal solution.

 The same communication procedure as above is

used for the final step of the GA. Each node sends

its optimum to all the other nodes in the cluster and

the final optimal individual is decided by each of

them. The best chromosome is selected from the

optimal individuals. The result is the same on every

node, because the computing procedure and the

individuals at the last step of the GA are the same.

 The scheduling obtained is saved in a history file on

each node in the cluster.

This is a distributed, fault-tolerant, scalable, and

efficient solution of dynamic scheduling for optimized

assignment of tasks from RUNNING-QUEUE or

CHILDREN-QUEUE. The assignResource uses a

combination of genetic algorithms and monitoring

services for obtaining a scalable and highly reliable

optimization tool. The monitoring system used is the

MonALISA environment and its extensions. As we’ll

see in the result section, the results highlight very good

behaviour in comparison with other decentralized

scheduling approaches.

5. EXPERIMENTAL RESULTS

The testing of CCF algorithm on the example in Figure

2 led to the results presented in Figure 4.

We compute the cost (c) of the task according to its

requirements: needed memory, CPU speed (given in

MIPS), etc. To obtain the inter-task communication

time () we have to retrieve the link characteristics

(latency and bandwidth) using the formula:

latency
bandwidth

sizedata

_
 .

The communication computation ratio is defined as the

average edge weight divided by the average node

weight.

P2

P1

P0 1 2 5 7 9

4 8

3 6

Resources

Time
0 10 20 30 40 50 60 70 80 90 100 110 120

Figure 4. Result of CCF algorithm

The experiment for the assignResource analyses the

metrics discussed in a decentralized scheduling scenario

(Iordache G. et al, 2006), in which a cooperative

genetic strategy has been employed. The cooperative

characteristic implies optimal individuals interchange in

order to speed up convergence. The input task set is the

same as previously, as well as the level of

decentralization (3), and the number of generations

(100).

Figure 5. Comparison the completion time between two

strategies for resource assignment

Figure 5 illustrates the schedule obtained. An essential

improvement of completion time has been achieved,

namely an improvement of 16%, in comparison with

the static strategy for assigning resources. This

performance comparison of the proposed method and

static assignment methods is made using tree processors

(as we see in Figure 4). Tests were performed using a

graph with nine tasks (example from figure 2).

For the entire set of tasks (with dependencies) we

obtained a good load balancing for processors if the

communication time is low and the task dependencies

have no many edges. A good load balancing is obtained

if we consider only the task from RUNNING-QUEUE

(with no dependencies).

Figure 6. Completion time compare for 25 dependent

tasks

Finally, we tested the resource assignment for 25

dependent tasks. The completion time is shown in

Figure 6. An improvement of 16% for completion time

has been achieved.

6. CONCLUSIONS AND FUTURE WORK

Task dependencies are more frequently encountered in

Grid applications. Scheduling solutions for these cases

are required under the constraints of QoS. We proposed

a heuristic solution for existing DAG scheduling

algorithm, namely: cluster ready, children first. The

solution uses genetic algorithms for the resource

assignment process. With this approach, we obtained a

good improvement in QoS as compared with the static

assignment method.

The main contribution of this research is the use of an

intelligent, heuristic method for optimizing Grid

scheduling for DAG. Future work will consider: new

scheduling algorithms for real-time scenarios, solutions

for backup and recovery from error (re-scheduling),

optimized file transfer, solving the problem of co-

scheduling, multi-criteria constrains scheduling.

We also want to include this intelligent method for

DAG scheduling in the DIOGENES (DIstributed

Optimal GENEtic Algorithm for grid application

Scheduling) project (DIO, 2007).

REFERENCES

Armstrong, R., Hensgen, D., Kidd, T. The relative

performance of various mapping algorithms is

independent of sizable variances in run-time

predictions. Procs. of the 7th IEEE HCW, pp. 79-

87, 1998.

Cao, J. et al. Grid load balancing using intelligent

agents. Future Generation Computer Systems

special issue on Intelligent Grid Environments:

Principles and Applications, 2004.

Coffman, E.G., Grahman, R.L., Optimal scheduling for

two-processor systems. Acta Informatica, 1:200-

213, 1972.

DIOGENES project (DIO), http://diogenes.grid.pub.ro/,

 Accessed on 15 January 2007.

Dong, F., Akl, S.G., Scheduling Algorithms for Grid

Computing: State of the art and opened problems,

Technical report no. 2006-504, January 2006.

EGEE project, http://public.eu-egee.org,

 Accessed on 15 January 2007.

FORTI A., DAG Scheduling for Grid Computing

systems. Ph.D. Thesis, University of Udine – Italy,

2006

Foster, I., Globus Toolkit Version 4: Software for

Service-Oriented Systems, in the Proceedings of

IFIP International Conference of Network and

Parallel Computing, Springer-Verlag LNCS Vol.

3779, pp 2-13, Beijing, China. December 2005.

Heymann, E., Fernndez, A., Senar, M.A., Salt J. The

EU-CrossGrid Approach for Grid Application

Scheduling. LNCS, Vol. 2970, pp. 17-24, 2004.

Hu, T.C., Parallel sequencing and assembly line

problems. Oper. Research. 19(6):841-848,

November, 1961

Iordache G., Boboila M., Pop F., Stratan C., Cristea V.,

A Decentralized Strategy for Genetic Scheduling in

Heterogeneous Environments, Proceedings of

GADA Conference, LNCS 4276 proceedings, pp.

1234-1251, Montpellier, France, November 2-3,

2006.

Jenifer M. Schopf, Ten Action when scheduling, In Grid

resource management: state of the art and future

trends, chapter 2, pages 15-23, Kluwer Academic

Publishers, 2003.

Joshy, J., Fellenstein, C., Introduction to Grid

Computing, Prentice Hall PTR, Apr 16, 2004.

LCG project, http://lcg.web.cern.ch/LCG,

 Accessed on 15 January 2007.

Papadimitroiu, C.H., Yannakakis, M., Scheduling

interval-order tasks. SIAM J. Computing, 8:405-

09, 1979.

Pop F., Dobre C., Godza G., Cristea V., A simulation

model for grid scheduling analysis and

optimization, Proceedings of PARELEC

Conference, pp. 133-138, Bialystok, Poland,

September 13-17, 2006, ISBN: 0-7695-2554-7.

SEE-GRID project http://www.see-grid.org,

 Accessed on 15 January 2007.

Yu-Kwong Kwok, High-performance algorithms of

compile-time scheduling of parallel processors.

PhD thesis, Hong Kong University of Science and

Technology, 1997

Yu-Kwong Kwok and Ishfaq Ahmed, Static scheduling

algorithm for allocating directed task graph to

multiprocessors. ACM Computing Surveys

31(4):406-471, 1999.

