
1

CS 114
Introduction to Computational Linguistics

Grammar and Parsing (II)

February 8, 2008

James Pustejovsky

Thanks to Dan Jurafsky and Jim Martin for many of these slides!

www.cs.brandeis.edu/~cs114/slides/114.08.lec10.ppt

www.stanford.edu/class/linguist180/180.07.lec10.ppt

2

Grammars and Parsing

Context-Free Grammars and Constituency

Some common CFG phenomena for English

Baby parsers: Top-down and Bottom-up Parsing

Today: Real parsers: Dynamic Programming parsing
CKY

Probabilistic parsing

Optional section: the Earley algorithm

3

Dynamic Programming

We need a method that fills a table with partial results
that

Does not do (avoidable) repeated work

Does not fall prey to left-recursion

Can find all the pieces of an exponential number of
trees in polynomial time.

Two popular methods
CKY

Earley

4

The CKY (Cocke-Kasami-Younger)
Algorithm

Requires the grammar be in Chomsky Normal Form
(CNF)

All rules must be in following form:

– A -> B C

– A -> w

Any grammar can be converted automatically to
Chomsky Normal Form

5

Converting to CNF

Rules that mix terminals and non-terminals
Introduce a new dummy non-terminal that covers the
terminal
– INFVP -> to VP replaced by:

– INFVP -> TO VP

– TO -> to

Rules that have a single non-terminal on right (“unit
productions”)

Rewrite each unit production with the RHS of their
expansions

Rules whose right hand side length >2
Introduce dummy non-terminals that spread the
right-hand side

6

Automatic Conversion to CNF

7

Sample Grammar

8

Back to CKY Parsing

Given rules in CNF

Consider the rule A -> BC

If there is an A in the input then there must be a B
followed by a C in the input.

If the A goes from i to j in the input then there must
be some k st. i<k<j

– Ie. The B splits from the C someplace.

9

CKY

So let’s build a table so that an A spanning from i to j
in the input is placed in cell [i,j] in the table.

So a non-terminal spanning an entire string will sit in
cell [0, n]

If we build the table bottom up we’ll know that the
parts of the A must go from i to k and from k to j

10

CKY

Meaning that for a rule like A -> B C we should look
for a B in [i,k] and a C in [k,j].

In other words, if we think there might be an A
spanning i,j in the input… AND

A -> B C is a rule in the grammar THEN

There must be a B in [i,k] and a C in [k,j] for some
i<k<j

So just loop over the possible k values

11

CKY Table

•Filling the
[i,j]th cell in
the CKY table

12

CKY Algorithm

13

Note

We arranged the loops to fill the table a column at a
time, from left to right, bottom to top.

This assures us that whenever we’re filling a cell, the
parts needed to fill it are already in the table (to the
left and below)

Are there other ways to fill the table?

14

0 Book 1 the 2 flight 3 through 4 Houston 5

15

CYK Example

S -> NP VP

VP -> V NP

NP -> NP PP

VP -> VP PP

PP -> P NP

NP -> John, Mary, Denver

V -> called

P -> from

16

Example

John called Mary from Denver

S

VP PP

NP VP

V NP NPP

17

Example

John called Mary from Denver

S

PP

NP VP

NP

NP

V

18

Example

NP

P Denver

NP from

V Mary

NP called

John

19

Example

NP

P Denver

NP from

X V Mary

NP called

John

20

Example

NP

P Denver

VP NP from

X V Mary

NP called

John

21

Example

NP

X P Denver

VP NP from

X V Mary

NP called

John

22

Example

PP NP

X P Denver

VP NP from

X V Mary

NP called

John

23

Example

PP NP

X P Denver

S VP NP from

V Mary

NP called

John

24

Example

PP NP

X X P Denver

S VP NP from

X V Mary

NP called

John

25

Example

NP PP NP

X P Denver

S VP NP from

X V Mary

NP called

John

26

Example

NP PP NP

X X X P Denver

S VP NP from

X V Mary

NP called

John

27

Example

VP NP PP NP

X X X P Denver

S VP NP from

X V Mary

NP called

John

28

Example

VP NP PP NP

X X X P Denver

S VP NP from

X V Mary

NP called

John

29

Example

VP1

VP2

NP PP NP

X X X P Denver

S VP NP from

X V Mary

NP called

John

30

Example

S VP1

VP2

NP PP NP

X X X P Denver

S VP NP from

X V Mary

NP called

John

31

Example

S VP NP PP NP

X X X P Denver

S VP NP from

X V Mary

NP called

John

32

Back to Ambiguity

Did we solve it?

33

Ambiguity

34

Ambiguity

No…

Both CKY and Earley will result in multiple S
structures for the [0,n] table entry.

They both efficiently store the sub-parts that are
shared between multiple parses.

But neither can tell us which one is right.

Not a parser – a recognizer

– The presence of an S state with the right attributes in
the right place indicates a successful recognition.

– But no parse tree… no parser

– That’s how we solve (not) an exponential problem in
polynomial time

35

Converting CKY from Recognizer
to Parser

With the addition of a few pointers we have a parser

Augment each new cell in chart to point to where we
came from.

36

Optional section: the Earley alg

37

Problem (minor)

We said CKY requires the grammar to be binary (ie.
In Chomsky-Normal Form).

We showed that any arbitrary CFG can be converted
to Chomsky-Normal Form so that’s not a huge deal

Except when you change the grammar the trees
come out wrong

All things being equal we’d prefer to leave the
grammar alone.

38

Earley Parsing

Allows arbitrary CFGs

Where CKY is bottom-up, Earley is top-down

Fills a table in a single sweep over the input words

Table is length N+1; N is number of words

Table entries represent

– Completed constituents and their locations

– In-progress constituents

– Predicted constituents

39

States

The table-entries are called states and are represented
with dotted-rules.

S -> · VP A VP is predicted

NP -> Det · Nominal An NP is in progress

VP -> V NP · A VP has been found

40

States/Locations

It would be nice to know where these things are in the input
so…

S -> · VP [0,0] A VP is predicted at the
start of the sentence

NP -> Det · Nominal [1,2] An NP is in progress; the
Det goes from 1 to 2

VP -> V NP · [0,3] A VP has been found
starting at 0 and ending at 3

41

Graphically

42

Earley

As with most dynamic programming approaches, the
answer is found by looking in the table in the right
place.

In this case, there should be an S state in the final
column that spans from 0 to n+1 and is complete.

If that’s the case you’re done.

S –> α · [0,n+1]

43

Earley Algorithm

March through chart left-to-right.

At each step, apply 1 of 3 operators

Predictor

– Create new states representing top-down expectations

Scanner

– Match word predictions (rule with word after dot) to
words

Completer

– When a state is complete, see what rules were looking
for that completed constituent

44

Predictor

Given a state
With a non-terminal to right of dot

That is not a part-of-speech category

Create a new state for each expansion of the non-terminal

Place these new states into same chart entry as generated state,
beginning and ending where generating state ends.

So predictor looking at
– S -> . VP [0,0]

results in
– VP -> . Verb [0,0]

– VP -> . Verb NP [0,0]

45

Scanner

Given a state
With a non-terminal to right of dot

That is a part-of-speech category

If the next word in the input matches this part-of-speech

Create a new state with dot moved over the non-terminal

So scanner looking at
– VP -> . Verb NP [0,0]

If the next word, “book”, can be a verb, add new state:
– VP -> Verb . NP [0,1]

Add this state to chart entry following current one

Note: Earley algorithm uses top-down input to disambiguate POS!
Only POS predicted by some state can get added to chart!

46

Completer

Applied to a state when its dot has reached right end of role.

Parser has discovered a category over some span of input.

Find and advance all previous states that were looking for this category
copy state, move dot, insert in current chart entry

Given:
NP -> Det Nominal . [1,3]

VP -> Verb. NP [0,1]

Add
VP -> Verb NP . [0,3]

47

Earley: how do we know we are
done?

How do we know when we are done?.

Find an S state in the final column that spans from 0
to n+1 and is complete.

If that’s the case you’re done.
S –> α · [0,n+1]

48

Earley

So sweep through the table from 0 to n+1…

New predicted states are created by starting top-
down from S

New incomplete states are created by advancing
existing states as new constituents are discovered

New complete states are created in the same way.

49

Earley

More specifically…

1. Predict all the states you can upfront

2. Read a word

1. Extend states based on matches

2. Add new predictions

3. Go to 2

3. Look at N+1 to see if you have a winner

50

Example

Book that flight

We should find… an S from 0 to 3 that is a completed
state…

51

Example

52

Example

53

Example

54

Details

What kind of algorithms did we just describe (both
Earley and CKY)

Not parsers – recognizers

– The presence of an S state with the right attributes in
the right place indicates a successful recognition.

– But no parse tree… no parser

– That’s how we solve (not) an exponential problem in
polynomial time

55

Back to Ambiguity

Did we solve it?

56

Ambiguity

57

Ambiguity

No…

Both CKY and Earley will result in multiple S
structures for the [0,n] table entry.

They both efficiently store the sub-parts that are
shared between multiple parses.

But neither can tell us which one is right.

Not a parser – a recognizer

– The presence of an S state with the right attributes in
the right place indicates a successful recognition.

– But no parse tree… no parser

– That’s how we solve (not) an exponential problem in
polynomial time

58

Converting Earley from
Recognizer to Parser

With the addition of a few pointers we have a parser

Augment the “Completer” to point to where we came
from.

59

Augmenting the chart with
structural information

S8

S9

S10

S11

S13

S12

S8

S9

S8

60

Retrieving Parse Trees from Chart

All the possible parses for an input are in the table

We just need to read off all the backpointers from every complete S in
the last column of the table

Find all the S -> X . [0,N+1]

Follow the structural traces from the Completer

Of course, this won’t be polynomial time, since there could be an
exponential number of trees

So we can at least represent ambiguity efficiently

61

How to do parse disambiguation

Probabilistic methods

Augment the grammar with probabilities

Then modify the parser to keep only most probable
parses

And at the end, return the most probable parse

62

Probabilistic CFGs

The probabilistic model

Assigning probabilities to parse trees

Getting the probabilities for the model

Parsing with probabilities

Slight modification to dynamic programming
approach

Task is to find the max probability tree for an input

63

Probability Model

Attach probabilities to grammar rules

The expansions for a given non-terminal sum to 1

VP -> Verb .55

VP -> Verb NP .40

VP -> Verb NP NP .05

Read this as P(Specific rule | LHS)

64

PCFG

65

PCFG

66

Probability Model (1)

A derivation (tree) consists of the set of grammar
rules that are in the tree

The probability of a tree is just the product of the
probabilities of the rules in the derivation.

67

Probability model

P(T,S) = P(T)P(S|T) = P(T); since P(S|T)=1

P(T,S) = p(rn)
n ∈T

∏

68

Probability Model (1.1)

The probability of a word sequence P(S) is the
probability of its tree in the unambiguous case.

It’s the sum of the probabilities of the trees in the
ambiguous case.

69

Getting the Probabilities

From an annotated database (a treebank)

So for example, to get the probability for a particular
VP rule just count all the times the rule is used and
divide by the number of VPs overall.

70

TreeBanks

71

Treebanks

72

Treebanks

73

Treebank Grammars

74

Lots of flat rules

75

Example sentences from those
rules

Total: over 17,000 different grammar rules in the 1-
million word Treebank corpus

76

Probabilistic Grammar
Assumptions

We’re assuming that there is a grammar to be used to parse
with.

We’re assuming the existence of a large robust dictionary
with parts of speech

We’re assuming the ability to parse (i.e. a parser)

Given all that… we can parse probabilistically

77

Typical Approach

Bottom-up (CKY) dynamic programming approach

Assign probabilities to constituents as they are
completed and placed in the table

Use the max probability for each constituent going up

78

What’s that last bullet mean?

Say we’re talking about a final part of a parse
S->0NPiVPj

The probability of the S is…

P(S->NP VP)*P(NP)*P(VP)

The green stuff is already known. We’re doing bottom-
up parsing

79

Max

I said the P(NP) is known.

What if there are multiple NPs for the span of text in
question (0 to i)?

Take the max (where?)

80

Problems with PCFGs

The probability model we’re using is just based on the
rules in the derivation…

Doesn’t use the words in any real way

Doesn’t take into account where in the derivation a
rule is used

81

Solution

Add lexical dependencies to the scheme…

Infiltrate the predilections of particular words into the
probabilities in the derivation

I.e. Condition the rule probabilities on the actual
words

82

Heads

To do that we’re going to make use of the notion of
the head of a phrase

The head of an NP is its noun

The head of a VP is its verb

The head of a PP is its preposition

(It’s really more complicated than that but this will do.)

83

Example (right)

Attribute grammar

84

Example (wrong)

85

How?

We used to have
VP -> V NP PP P(rule|VP)
– That’s the count of this rule divided by the number of

VPs in a treebank

Now we have
VP(dumped)-> V(dumped) NP(sacks)PP(in)

P(r|VP ^ dumped is the verb ^ sacks is the head of
the NP ^ in is the head of the PP)

Not likely to have significant counts in any treebank

86

Declare Independence

When stuck, exploit independence and collect the
statistics you can…

We’ll focus on capturing two things

Verb subcategorization

– Particular verbs have affinities for particular VPs

Objects affinities for their predicates (mostly their
mothers and grandmothers)

– Some objects fit better with some predicates than
others

87

Subcategorization

Condition particular VP rules on their head… so
r: VP -> V NP PP P(r|VP)

Becomes

P(r | VP ^ dumped)

What’s the count?

How many times was this rule used with (head) dump,
divided by the number of VPs that dump appears (as
head) in total

88

Preferences

Subcat captures the affinity between VP heads
(verbs) and the VP rules they go with.

What about the affinity between VP heads and the
heads of the other daughters of the VP

Back to our examples…

89

Example (right)

90

Example (wrong)

91

Preferences

The issue here is the attachment of the PP. So the
affinities we care about are the ones between
dumped and into vs. sacks and into.

So count the places where dumped is the head of a
constituent that has a PP daughter with into as its
head and normalize

Vs. the situation where sacks is a constituent with
into as the head of a PP daughter.

92

Preferences (2)

Consider the VPs

Ate spaghetti with gusto

Ate spaghetti with marinara

The affinity of gusto for eat is much larger than its
affinity for spaghetti

On the other hand, the affinity of marinara for
spaghetti is much higher than its affinity for ate

93

Preferences (2)

Note the relationship here is more distant and
doesn’t involve a headword since gusto and
marinara aren’t the heads of the PPs.

Vp (ate) Vp(ate)

Vp(ate) Pp(with)

Pp(with)

Np(spag)

np
vv

Ate spaghetti with marinaraAte spaghetti with gusto

np

94

Summary

Context-Free Grammars

Parsing

Top Down, Bottom Up Metaphors

Dynamic Programming Parsers: CKY. Earley

Disambiguation:

PCFG

Probabilistic Augmentations to Parsers

Treebanks

