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1. Origins and Integration of the Concepts Critical Applications was held in 1989. This and the six
working conferences that followed fostered the interaction
of the dependability and security communities, and
advanced the integration of security (confidentiality,
integrity and availability) into the framework of
dependable computing [22]. A summary of [22] is
presented next.

The concept of dependable computing first appears in
the 1830’s in the context of Babbage’s Calculating Engine
[1,2]. The first generation of electronic computers (late
1940’s to mid-50’s) used rather unreliable components,
therefore practical techniques were employed to improve
their reliability, such as error control codes, duplexing
with comparison, triplication with voting, diagnostics to
locate failed components, etc. [3-5]. 2. The Principal Concepts: a Summary

A systematic exposition of the concepts of
dependability consists of three parts: the threats to, the
attributes of, and the means by which dependability is
attained, as shown in Figure 1.

At the same time J. von Neumann [6], E. F. Moore
and C. E. Shannon [7] and their successors developed
theories of using redundancy to build reliable logic
structures from less reliable components, whose faults
were masked by the presence of multiple redundant
components. The theories of masking redundancy were
unified by W. H. Pierce as the concept of failure tolerance
in 1965 [8]. In 1967, A. Avizienis integrated masking
with the practical techniques of error detection, fault
diagnosis, and recovery into the concept of fault-tolerant
systems [9]. In the reliability modeling field, the major
event was the introduction of the coverage concept by
Bouricius, Carter and Schneider [10]. Seminal work on
software fault tolerance was initiated by B. Randell
[11,12], later it was complemented by N-version
programming [13].
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Computing in 1970 and of IFIP WG 10.4 Dependable
Computing and Fault Tolerance in 1980 accelerated the
emergence of a consistent set of concepts and
terminology. Seven position papers were presented in
1982 at FTCS-12 [14], and J.-C. Laprie formulated a
synthesis in 1985 [15]. Further work by members of IFIP
WG 10.4, led by J.-C. Laprie, resulted in the 1992 book
Dependability: Basic Concepts and Terminology [16], in
which the English text was also translated into French,
German, Italian, and Japanese.

Figure 1 - The dependability tree

Computing systems are characterized by four
fundamental properties: functionality, performance, cost,
and dependability. Dependability  of a computing system
is the ability to deliver service that can justifiably be
trusted. The service delivered by a system is its behavior
as it is perceived by its user(s); a user is another system
(physical, human) that interacts with the former at the
service interface. The function of a system is what the
system is intended for, and is described by the system
specification.

In [16], intentional faults (malicious logic, intrusions)
were listed along with accidental faults (physical, design,
or interaction faults). Exploratory research on the
integration of fault tolerance and the defenses against the
intentional faults, i.e., security threats, was started at the
RAND Corporation [17], University of Newcastle [18],
LAAS [19], and UCLA [20,21] in the mid-80’s. The 1st

IFIP Working Conference on Dependable Computing for

2.1. The Threats: Faults, Errors, and Failures

Correct service is delivered when the service
implements the system function. A system failure is an
event that occurs when the delivered service deviates from
correct service. A system may fail either because it does
not comply with the specification, or because the
specification did not adequately describe its function. A
failure is a transition from correct service to incorrect The alphabetic ordering of authors’ names does not imply
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service, i.e., to not implementing the system function. A
transition from incorrect service to correct service is
service restoration. The time interval during which
incorrect service is delivered is a service outage. An error
is that part of the system state that may cause a
subsequent failure: a failure occurs when an error reaches
the service interface and alters the service. A fault is the
adjudged or hypothesized cause of an error. A fault is
active when it produces an error, otherwise it is dormant.
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A system does not always fail in the same way. The
ways a system can fail are its failure modes. As shown in
Figure 2, the modes characterize incorrect service
according to three viewpoints: a) the failure domain, b)
the perception of a failure by system users, and c) the
consequences of failures on the environment.
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Figure 3 - Elementary fault classes

2.2. The Attributes of Dependability

Dependability is an integrative concept that
encompasses the following attributes: availability:
readiness for correct service; reliability: continuity of
correct service; safety: absence of catastrophic
consequences on the user(s) and the environment;
confidentiality: absence of unauthorized disclosure of
information; integrity: absence of improper system state
alterations; maintainability; ability to undergo repairs
and modifications.

Figure 2 - The failure modes

A system consists of a set of interacting components,
therefore the system state is the set of its component
states. A fault originally causes an error within the state of
one (or more) components, but system failure will not
occur as long as the error does not reach the service
interface of the system. A convenient classification of
errors is to describe them in terms of the component
failures that they cause, using the terminology of Figure
2: value vs. timing errors; consistent vs. inconsistent
(‘Byzantine’) errors when the output goes to two or more
components; errors of different severities: minor vs.
ordinary vs. catastrophic errors. An error is detected if its
presence in the system is indicated by an error message
or error signal that originates within the system. Errors
that are present but not detected are latent errors.

Security is the concurrent existence of a) availability
for authorized users only, b) confidentiality, and c)
integrity with ‘improper’ meaning ‘unauthorized’.

The above attributes may be emphasized to a greater or
lesser extent depending on the application: availability is
always required, although to a varying degree, whereas
reliability, safety, confidentiality may or may not be
required. The extent to which a system possesses the
attributes of dependability should be interpreted in a
relative, probabilistic, sense, and not in an absolute,
deterministic sense: due to the unavoidable presence or
occurrence of faults, systems are never totally available,
reliable, safe, or secure.

Faults and their sources are very diverse. Their
classification according to six major criteria is presented
in Figure 3. Of special interest for this Workshop are
faults that result from attacks on a system. They are
classified as deliberately malicious (d.m.) faults and
include malicious logic [23] (Trojan horses, logic bombs,
trapdoors are d.m. design faults, while viruses and worms
are d.m. operational faults), intrusions (d.m. external
operational faults) and physical attacks on a system (d.m.
physical operational faults). Figure 4 shows the combined
fault classes for which defenses need to be devised.

Integrity is a prerequisite for availability, reliability
and safety, but may not be so for confidentiality (for
instance attacks via covert channels or passive listening
can lead to a loss of confidentiality, without impairing
integrity). The definition given for integrity – absence of
improper system state alterations – extends the usual
definition as follows: (a) when a system implements an
authorization policy, ’improper’ encompasses
‘unauthorized’; (b) ‘improper alterations’ encompass
actions resulting in preventing (correct) upgrades of
information; (c) ‘system state’ encompasses hardware
modifications or damages. The definition given for
maintainability goes beyond corrective and preventive
maintenance, and encompasses two other forms of
maintenance: adaptive and perfective maintenance.

Fault pathology, i.e., the relationship between faults,
errors, and failures is summarized by Figure 5, which
gives the fundamental chain of threats to dependability.
The arrows in this chain express a causality relationship
between faults, errors and failures. They should be
interpreted generically: by propagation, several errors can
be generated before a failure occurs.

2



PHYSICAL
FAULTS

INTERACTION
FAULTS

DESIGN
FAULTS

NATURAL FAULTS

HUMAN-MADE FAULTS

EXTERNAL FAULTS

INTERNAL FAULTS

PERMANENT FAULTS

TRANSIENT FAULTS

INFORMATION FAULTS

PHYSICAL FAULTS

DELIBERATELY
MALICIOUS FAULTS

ACCIDENTAL FAULTS

DELIBERATE, NON-
MALICIOUS FAULTS

OPERATIONAL FAULTS

DEVELOPMENTAL FAULTS

PRODUCTION FAULTS

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 4 - Combined fault classes

errorfault failure fault
activation propagation causation ……

Figure 5 - The fundamental chain of threats to dependability

The variations in the emphasis on the different
attributes of dependability directly affect the appropriate
balance of the techniques (fault prevention, tolerance,
removal and forecasting) to be employed in order to make
the resulting system dependable. This problem is all the
more difficult as some of the attributes conflict (e.g.
availability and safety, availability and security),
necessitating design trade-offs.

Security has not been introduced as a single attribute
of dependability. This is in agreement with the usual
definitions of security, which view it as a composite
notion, namely [24] "the combination of (1)
confidentiality (the prevention of the unauthorized
disclosure of information), (2) integrity (the prevention of
the unauthorized amendment or deletion of information),
and (3) availability (the prevention of the unauthorized
withholding of information)". A single definition for
security could be: the absence of unauthorized access to,
or handling of, system state.

2.3. The Means to Attain Dependability

The development of a dependable computing system
calls for the combined utilization of a set of four
techniques: fault prevention: how to prevent the
occurrence or introduction of faults; fault tolerance: how
to deliver correct service in the presence of faults; fault
removal: how to reduce the number or severity of faults;
fault forecasting: how to estimate the present number,
the future incidence, and the likely consequences of faults.

In their definitions, availability and reliability
emphasize the avoidance of failures, while safety and
security emphasize the avoidance of a specific class of
failures (catastrophic failures, unauthorized access or
handling of information, respectively). Reliability and
availability are thus closer to each other than they are to
safety on one hand, and to security on the other;
reliability and availability can be grouped together, and
collectively defined as the avoidance or minimization of
service outages.

2.3.1. Fault Prevention
Fault prevention is attained by quality control

techniques employed during the design and manufacturing
of hardware and software. They include structured
programming, information hiding, modularization, etc.,
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for software, and rigorous design rules for hardware.
Operational physical faults are prevented by shielding,
radiation hardening, etc., while interaction faults are
prevented by training, rigorous procedures for
maintenance, "foolproof" packages. Malicious faults are
prevented by firewalls and similar defenses.

classes of faults that can actually be tolerated depend on
the fault assumption in the design process. A widely-used
method of fault tolerance is to perform multiple
computations in multiple channels, either sequentially or
concurrently. When tolerance of operational physical faults
is required, the channels may be of identical design, based
on the assumption that hardware components fail
independently. Such an approach has proven to be
adequate for elusive design faults, via rollback, however it
is not suitable for the tolerance of solid design faults,
which necessitates that the channels implement the same
function via separate designs and implementations, i.e.,
through design diversity.

2.3.2. Fault Tolerance
Fault tolerance is intended to preserve the delivery of

correct service in the presence of active faults. It is
generally implemented by error detection and subsequent
system recovery.

Error detection originates an error signal or message
within the system. An error that is present but not
detected is a latent error. There exist two classes of error
detection techniques: (a) concurrent error detection,
which takes place during service delivery; and (b)
preemptive error detection, which takes place while
service delivery is suspended; it checks the system for
latent errors and dormant faults.

Fault tolerance is a recursive concept: it is essential
that the mechanisms that implement fault tolerance should
be protected against the faults that might affect them.
Examples are voter replication, self-checking checkers,
‘stable’ memory for recovery programs and data, etc.
Systematic introduction of fault tolerance is facilitated by
the addition of support systems specialized for fault
tolerance such as software monitors, service processors,
dedicated communication links.

Recovery transforms a system state that contains one
or more errors and (possibly) faults into a state without
detected errors and faults that can be activated again.
Recovery consists of error handling and fault handling.
Error handling eliminates errors from the system state.
It may take two forms: (a) rollback, where the state
transformation consists of returning the system back to a
saved state that existed prior to error detection; that saved
state is a checkpoint, (b) rollforward, where the state
without detected errors is a new state.

Fault tolerance is not restricted to accidental faults.
Some mechanisms of error detection are directed towards
both malicious and accidental faults (e.g. memory access
protection techniques) and schemes have been proposed
for the tolerance of both intrusions and physical faults, via
information fragmentation and dispersal, as well as for
tolerance of malicious logic, and more specifically of
viruses, either via control flow checking, or via design
diversity.Fault handling prevents located faults from being

activated again. Fault handling involves four steps: (a)
fault diagnosis that identifies and records the cause(s) of
error(s), in terms of both location and type, (b) fault
isolation  that performs physical or logical exclusion of
the faulty components from further participation in service
delivery, i.e., it makes the fault dormant, (c) system
reconfiguration that either switches in spare components
or reassigns tasks among non-failed components, (d)
system reinitialization  that checks, updates and records
the new configuration and updates system tables and
records. Usually, fault handling is followed by corrective
maintenance that removes faults isolated by fault
handling. The factor that distinguishes fault tolerance
from maintenance is that maintenance requires the
participation of an external agent.

2.3.3. Fault Removal
Fault removal is performed both during the

development phase, and during the operational life of a
system. Fault removal during the development phase of a
system life-cycle consists of three steps: verification,
diagnosis, correction. Verification is the process of
checking whether the system adheres to given properties,
termed the verification conditions. If it does not, the other
two steps follow: diagnosing the fault(s) that prevented
the verification conditions from being fulfilled, and then
performing the necessary corrections.

Checking the specification is usually referred to as
validation. Uncovered specification faults can happen at
any stage of the development, either during the
specification phase itself, or during subsequent phases
when evidence is found that the system will not
implement its function, or that the implementation cannot
be achieved in a cost effective way.

The use of sufficient redundancy may allow recovery
without explicit error detection. This form of recovery is
called fault masking.

Preemptive error detection and handling (often called
BIST: built-in self-test), possibly followed by fault
handling is performed at system power up. It also comes
into play during operation, under various forms such as
spare checking, memory scrubbing, audit programs, or the
so-called software rejuvenation, aimed at removing the
effects of software aging before they lead to failure.

Verification techniques can be classified according to
whether or not they involve exercising the system.
Verifying a system without actual execution is static
verification. Verification a system through exercising it
constitutes dynamic verification ; the inputs supplied to
the system can be either symbolic in the case of symbolic
execution, or actual in the case of verification testing,
usually simply termed testing. An important aspect is the
verification of fault tolerance mechanisms, especially a)
formal static verification, and b) testing that necessitates

The choice of error detection, error handling and fault
handling techniques, and of their implementation, is
directly related to the underlying fault assumption. The
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faults or errors to be part of the test patterns, that is
usually referred to as fault injection. Verifying that the
system cannot do more than what is specified is especially
important with respect to what the system should not do,
thus with respect to safety and security. Designing a
system in order to facilitate its verification is termed
design for verifiability. This approach is well-developed
for hardware with respect to physical faults, where the
corresponding techniques are termed design for testability.

availability: a measure of the delivery of correct service
with respect to the alternation of correct and incorrect
service; (3) maintainability: a measure of the time to
service restoration since the last failure occurrence, or
equivalently, measure of the continuous delivery of
incorrect service; (4) safety is an extension of reliability.
When the state of correct service and the states of incorrect
service due to non-catastrophic failure are grouped into a
safe state (in the sense of being free from catastrophic
damage, not from danger), safety is a measure of
continuous safeness, or equivalently, of the time to
catastrophic failure. Safety is thus reliability with respect
to catastrophic failures.

Fault removal during the operational life of a system
is corrective or preventive maintenance. Corrective
maintenance is aimed to remove faults that have
produced one or more errors and have been reported, while
preventive maintenance is aimed to uncover and remove
faults before they might cause errors during normal
operation. The latter faults include a) physical faults that
have occurred since the last preventive maintenance
actions, and b) design faults that have led to errors in
other similar systems. Corrective maintenance for design
faults is usually performed in stages: the fault may be first
isolated (e.g., by a workaround or a patch) before the
actual removal is completed. These forms of maintenance
apply to non-fault-tolerant systems as well as fault-
tolerant systems, that can be maintainable on-line
(without interrupting service delivery) or off-line (during
service outage).

Generally, a system delivers several services, and there
often are two or more modes of service quality, e.g.
ranging from full capacity to emergency service. These
modes distinguish less and less complete service
deliveries. Performance-related measures of dependability
are usually subsumed into the notion of performability.

The two main approaches to probabilistic fault-
forecasting, aimed to derive probabilistic estimates of
dependability measures, are modeling and (evaluation)
testing. These approaches are complementary, since
modeling needs data on the basic processes modeled
(failure process, maintenance process, system activation
process, etc.), that may be obtained either by testing, or
by the processing of failure data.2.3.4. Fault Forecasting

When evaluating fault-tolerant systems, the coverage
provided by error and fault handling mechanisms has a
drastic influence on dependability measures. The
evaluation of coverage can be performed either through
modeling or through testing, i.e. fault injection.

Fault forecasting is conducted by performing an
evaluation of the system behavior with respect to fault
occurrence or activation. Evaluation has two aspects: (1)
qualitative, or ordinal, evaluation, that aims to
identify, classify, rank the failure modes, or the event
combinations (component failures or environmental
conditions) that would lead to system failures; (2)
quantitative, or probabilistic, evaluation, that aims to
evaluate in terms of probabilities the extent to which
some of the attributes of dependability are satisfied; those
attributes are then viewed as measures of dependability.
The methods for qualitative and quantitative evaluation
are either specific (e.g., failure mode and effect analysis
for qualitative evaluation, or Markov chains and stochastic
Petri nets for quantitative evaluation), or they can be used
to perform both forms of evaluation (e.g., reliability block
diagrams, fault-trees).

3. Relating Survivability and Dependability
The dependability concepts outlined above are the

results of nearly twenty years of activity. Survivability
can be traced back to the late sixties - early seventies in
the military standards, where it was defined as a system
capacity to resist a hostile environment so that it can
fulfill its mission (see, e.g., MIL-STD-721 or DOD-D-
5000.3).

Dependability has evolved from reliability/availability
concerns, along with the technological developments of
the computing and communications field, in order to
respond adequately to the challenges posed by
increasingly networked applications, and by the increase
in the necessary reliance we have to place on ubiquitous
computing. Survivability, as it is understood in the
workshop (according to the call for participation: “ability
of a system to continue to fulfill its mission in the
presence of attacks, failures, or accidents”) has evolved
[25] from pure security concerns; it has gained much
prominence with the increase of frequency and severity of
attacks by intelligent adversaries on mission-critical
networked information systems.

The evolution of dependability over a system's life-
cycle is characterized by the notions of stability, growth,
decrease that can be stated for the various attributes of
dependability. These notions are illustrated by failure
intensity, i.e., the number of failures per unit of time. It
is a measure of the frequency of system failures, as
noticed by its user(s). Failure intensity typically first
decreases (reliability growth), then stabilizes (stable
reliability) after a certain period of operation, then
increases (reliability decrease), and the cycle resumes.

The alternation of correct-incorrect service delivery is
quantified to define reliability, availability and
maintainability as measures of dependability: (1)
reliability: a measure of the continuous delivery of correct
service — or, equivalently, of the time to failure; (2)

From the perspective of the dependability framework,
survivability is dependability in the presence of active
faults, having in mind all the classes of faults discussed
in section 2.1. However, dependability and survivability
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are actually very close to each other, especially when
looking at the primitives for implementing survivability,
i.e., the “3 R’s”: Resistance, Recognition, and Recovery
[25]. Resistance, i.e., the ability to repel attacks, relates,
in dependability terms, to fault prevention. Recognition,
i.e., the ability to recognize attacks and the extent of
damage, together with Recovery, i.e., the ability to restore
essential services during attack, and to recover full service
after attack, have much in common with fault tolerance.
Clearly dependability and survivability both go beyond
the traditional approaches, based on fault avoidance, and
have recognized the necessity of fault tolerance.
Dependability and survivability, via independent
evolutions, have actually converged and are much in
agreement.
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