
Chapter 3

Stability and Performance

Given a model of a system, we can talk about the stability of equilibrium
points (or other dynamical features) and discuss methods of defining the
performance of an input/output system. The goal of this chapter is to
describe the different types of local stability of an equilibrium point and
discuss the difference between local stability, global stability, and related
concepts. We also describe performance measures for (controlled) systems,
including transients and steady state response.

3.1 Qualitative features of nonlinear dynamical sys-

tems

We begin by given a description of some of the qualitative features of non-
linear dynamical systems, focusing on ODE representations.

Systems of ODEs

In the last chapter, we saw that one of the methods of modeling dynamical
systems is through the use of ordinary differential equations. A state space,
input/ouput system has the form

ẋ = f(x, u)

y = h(x),

where x ∈ R
n is the state, u ∈ R

p is the input, and y ∈ R
p is the output.

The smooth maps f : R
n×R

p → R and h : R
n → R

q represent the dynamics
and measurement for the system. We will focus in this text on single input,
single output (SISO) sytems, for which p = q = 1.
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We begin by studying the stability of the closed loop system. That is,
we assume that a feedback law, u = α(x) has been defined and hence we
are left with the dynamics and our system of ordinary differential equations
becomes

ẋ = f(x, α(x)) = F (x). (3.1)

We write x = (x1, . . . , xn) ∈ R
n for the state vector. Note that we do

not bother to write the vector x and differently than a scalar variable. It
will generally be clear from context whether a variable is a vector or scalar
quantity.

When an equation is written in the form of equation (3.1), we say that
it is in state space form. Higher order differential equations, such as those
given in the last chapter, can always be converted to state space form by

defining x = (y, ẏ,
. . . , y(n−1)).

MATLAB Example 1 (Simulating ODEs in MATLAB). MATLAB provides
several tools for representing, simulating, and analyzing ordinary differential
equations of the form in equation 3.1. To define an ODE in MATLAB, we
define a function representing the right hand side of equation (3.1):

function dxdt = fode(t, x)

dxdt = [

F1(x);

F2(x);

...

Fn(x);

];

Each function Fi(x) takes a (column) vector x and returns the ith element
of the differential equation. The first argument, t, represents the current
time and allows for the possibility of time-varying differential equations, in
which the right hand side of the ODE in equation (3.1) depends explicitly
on time.

ODEs define in this fashion can be simulated by using the MATLAB
ode45 command:

ode45(’file’, [0,T], [x10, x20, ..., xn0])

The first argument is the name of the file containing the ODE declaration,
the second argument gives the time interval over which the simulation should
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Figure 3.1: Simulation of a damped oscillator, as produced by MATLAB.

be performed and the final argument gives the vector of initial conditions.
The default action of the ode45 command is to plot the time response of
each of the states of the system.

Example 5 (Damped oscillator). Consider a damped oscillator (mass, spring,
damper systems), as derived in the last chapter. The equations of motion
for the system are

ẋ1 = x2

ẋ2 = −x1 − x2.

In vector form, the right hand side can be written as

F (x) =

[

x2

−x1 − x2

]

The output of a MATLAB simulation for this system is shown in Figure ??.

Phase portraits

A convenient way to understand the qualitative dynamics of dynamical sys-
tems with state x inR

2 is to plot the phase portrait of the system. Phase
portraits can generally only be plotted for two dimensions (or pl”planar”)
dynamical systems, but they often give insight into the dynamics of much
more complicated systems.

We start by introducing the concept of a vector field. For a system of
ordinary differential equations

ẋ = F (x)

the right hand side of the differential equation defines at every x ∈ R
n a

velocity. This velocity tells us how x changes and can be represented as a
vector f(x) ∈ R

n. For planar dynamical systems, we can plot these vectors
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Figure 3.2: Vector field plot (a) and phase portrait (b) for a damped oscilla-
tor. This plots were produced using the phaseplot command in MATLAB.

at a grid of points in the plane and obtain a visual image of the dynamics
of the system, as shown in Figure 3.2a.

A phase portrait is constructed by plotting the flow of the vector field
corresponding to the planar dynamical system. That is, for a set of initial
conditions x0 ∈ R

n, we plot the solution of the differential equation in the
plane R

2. This corresponds to following the arrows at each point in the
phase plane and drawing the resulting trajectory. By plotting the resulting
trajectories for several different initial conditions, we obtain a phase portrait,
as show in Figure 3.2b.

Phase portraits give us insight into the dynamics of the system by show-
ing us the trajectories plotted in the (two dimensional) state space of the
system. For example, we can see whether all trajectories tend to a single
point as time increase or whether there are more complicted behaviors as
the system evolves. In the example in Figure 3.2, we see that for all intitial
conditions, the system approaches the origin (x0). This is consistent with
our simulation in Figure 3.1, but it allows us to infer the behavior for all
initial conditions rather than a single initial condition. However, the phase
portrait does not readily tell us the rate of change of the states (although
this can be inferred from the length of the arrows in the vector field plot).

Equilibrium points

An equilibrium point of a dynamical system represents a stationary condition
for the dynamics. We say that at state xe is an equilibrium point for a
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dynamical system
ẋ = F (x)

if F (xe) = 0. If a dynamical system has an initial condition x(0) = xe then
it will stay at the equilibrium point: x(t) = xe for all t > 0.

Equilibrium points are one of the most important features of a dynami-
cal system since they define the states corresponding to constant operating
conditions. A dynamical system can have zero, one or more equilibrium
points.

Example 6. Mechanical pendulum One example of a system with multiple
equilibrium points is the simple pendulum. The dynamics of this system
were derived in the previous chapter and are given by

mθ̈ = mglsin(θ)

where theta is the angle that the pendulum makes with respect to the verticle
(θ = 0 corresponding to pointing down), m is the mass of the pendulum, l
is the length, and g is the gravitational constant.

We can write this system in state space form by defining x = (θ, θ̇) so
that

d

dt

[

x1

x2

]

=

[

x2

−gl sin(x1)

]

.

The equilibrium points for the system are given by

xe =

[

0
±nπ

]

where n = 0, 1, 2, . . . . The equilibrium points for n even correspond to the
pendulum is hanging down and those for n odd correspond to the pendulum
pointing up. A phase portrait for this system is shown in Figure 3.3.

3.2 Stability

The stability of an equilibrium point determines whether or not solutions
nearby the equilibrium point remain nearby, get closer, or get further away.

Definitions

An equilibrium point is stable if initial conditions that start near an equi-
librium point stay near that equilibrium point. Formally, we say that an
equilibrium point xe is stable if for all ε > 0, there exists an δ > 0 such that

‖x(0)− xe‖ < δ =⇒ ‖x(t)− xe‖ < ε for all t > 0.
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Figure 3.3: Phase portrait for a simple pendulum. The equilibrium points
are marked by solid dots along the x2 = 0 line.
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Figure 3.4: Phase portrait and time domain simulation for a system with a
single stable equilibrium point.

Note that this definition does not imply that x(t) gets closer to xe as time
increases, but rather just that it stays nearby. Furthermore, the value of δ
may depend on ε, so that if we wish to stay very close to the equilibrium
point, we may have to start very, very close (δ ¿ ε). This type of stability
is sometimes called stability “in the sense of Lyapunov”.

An example of a stable equilibrium point is shown in Figure ??. From
the phase portrait, we see that if we start near the equilibrium then we stay
near the equilibrium. Indeed, for this example, given any ε that defines the
range of possible initial conditions, we can simply choose δ = ε to satisfy
the definition of stability.

An equilibrium point is asymptotically stable if it is stable and also
x(t)→ 0 and t→∞. This corresponds to the case where all nearby trajec-
tories converge to the equilibrum point for large time. Figure ?? shows an
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Figure 3.5: Phase portrait and time domain simulation for a system with a
single asymptotically stable equilibrium point.

example of an asymptotically stable equilibrium point. Note from the phase
portraints that all trajectories not only stay near the equilibrium point at
the origin, but they all approach the origin as t gets large (the directions
of the arrows on the phase plot show the direction in which the trajectories
move).

An equilibrium point is unstable if it is not stable. More specifically, we
say that an equilibrium point is unstable if given any ε > 0, there always
exists an initial condition x(0) with ‖x(0) − xe‖ < ε such that x(t) is arbi-
trarily large as time increases. An example of an unstable equilibrium point
is shown in Figure 3.6.

For planar dynamical systems, equilibrium points have been assigned
names based on their stability type. An asymptotically stable equilibrium
point is called a sink or sometimes an attractor. An unstable equlibrium
point can either be a source, if all trajectories lead away from the equilibrium
point, or a saddle, if some trajectories lead to the equilibrium point and
others move away (this is the situation pictures in Figure 3.5. Finally, an
equilibrium point which is stable but not asymptotically stable (such as the
one in Figure 3.4 is called a center.

Lyapunov functions
Advanced

A powerful tool for determining stability is the use of Lyapunov functions.
A Lyapunov function V (x) is an energy-like function that can be used to
determine stability of a system. Roughly speaking, if we can find a non-
negative function that always decreases along trajectories of the system, we
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Figure 3.6: Phase portrait and time domain simulation for a system with a
single unstable equilibrium point.

can conclude that the minimum of the function is a stable equilibrium point
(locally).

To define this more formally, we make a few definitions. We say that a
function V (x) is positive definite if there exists a strictly increasing, scalar
function α with α(0) = 0 such that V (0) = 0 and V (x) ≥ α(‖x‖). We
will often write this as “V (x) > 0” (even though V (0) = 0). Similarly,
a function is negative definite if V (0) = 0 and V (x) ≤ −α(‖x‖). We say
tthat a function V (x) is positive semidefinite if V (x) can be zero at points
other than x = 0 but otherwise V (x) is strictly positive. We write this as
”V (x) ≥ 0” and define negative semi-definite functions analogously.

We can now characterize the stability of a system

ẋ = F (x) x ∈ R
n

Let V (x) be a non-negative function on R
n and let V̇ represent the time

derivative of V along trajectories of the system dynamics:

V̇ (x) =
∂V

∂x
ẋ =

∂V

∂x
F (x).

The following table characterizes the stability of the origin, x = 0:

V (x) > 0, V̇ (x) ≤ 0 =⇒ x = 0 is stable

V (x) > 0, V̇ (x) < 0 =⇒ x = 0 is asymptotically stable

If V satisfies one of the conditions above, we say that V is a Lyapunov
function for the system.
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Lyapunov functions are not unique and hence we can use many different
methods to find one. Indeed, one of the main difficulties in using Lyapunov
functions is finding them.1 It turns out that Lyapunov functions can always
be found for any stable system (under certain conditions) and hence one
knows that if a system is stable, a Lyapunov function exists (and vice versa).

Example 7. Consider a planar dynamical system

ẋ1 = −x1 − x2

ẋ2 = −x2

We choose as a Lyapunov function candidate the function

V (x) = x2
1 + x2

2

This function is clearly positive definite and has time derivative

V̇ (x) = 2x1ẋ1 + 2x2ẋ2

= −2x2
1 − 2x1x2 − 2x2

2

= −(x1 + x2)
2 − x2

1 − x
2
2.

Using the table above, we conclude that the origin is asymptotically stable.

3.3 Local Versus Global Behavior

As we have already seen through some of our examples, we can have more
than one equilibrium point in a given system and these equilibrium points
can have differing stability types. When there is more than one equilibrium
point in a system, none of the equilibrium points can be globally stable
(since starting at the other equilibrum point, we will necessary to move).
In this section we explore more careful the relationship between local and
global stability and give some conditions for characterizing stability regions.

Local stability and regions of attraction

A system may contain many equilibrium points and each of these equilibrium
points could be locally stable. By this we mean that if we perturb the
initial condition slighty, then the system stays in the neighborhood of that
equilibrium point (or, for asymptotic stability, returns to the equilibrium

1Fortunately, there are systematic tools available for searching for special classes of
Lyapunov functions, such as sums of squares [?].
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point). The definitions of stability that we gave in Section 3.2 reflect this
local nature.

The Lyapunov tests that we derived for checking stability were global
in nature. That is, we asked that a Lyapunov function satisfy V > 0 and
V̇ < 0 for all x ∈ R

n. To check for local stability, it is sufficient to ask that
V be locally positive definite and V̇ locally negative definite. More formally,
we say that a V (x) is locally positive definite (lpd) if there exists a strictly
increasing, scalar function α with α(0) = 0 and scuh that V (0) = 0 and
V (x) ≥ α(‖x‖) for all x in some open neighborhood N ⊂ R

n containing the
equilibrium point xe = 0.

With this definition, the characterizations of stability and asymptototic
stability carry through to the local case.

We can also define the set of all initial conditions that converge to a
given asymptoticallly stable equilibrium point. This set is called the region
of attraction for the equilibrium point. An example is shown in Figure ??.
In general, computing regions of attraction is extremely difficult.

Limit cycles and other attractors

3.4 System Performance Measures

So far, this chapter has only described the stability characteristics of a sys-
tems. While stability is often a desirably feature, stability alone may not be
sufficient in many applications. We will want to create feedback systems that
quickly react to changes and give high performance in measureable ways. In
this section, we consider two measures of performance that were introduced
already in the last chapter: step response and frequency response.

Transient response versus steady state response

Step response

We return now to the case of an input/output state space system

ẋ = f(x, u)

y = h(x)
(3.2)

where x ∈ R
n is the state and u, y ∈ R are the input and output. The

step response of the system 3.2 is defined as the output y(t) starting from
zero initial condition (or the appropriate equilibrium point) and given a step
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Figure 3.7: Sample step response

input:

u =

{

0 t = 0

1 t > 0

We note that the step input is discontinuous and hence is not physically
implementable. However, it is a convenient abstract that is widely used in
studying input/output systems.

A sample step response is shown in Figure 3.7. Several terms are used
when referring to a step response:

Steady state value The steady state value of a step response is the final
level of the output, assuming it converges.

Rise time The rise time is the amount of time required for the signal to
go from 5% of its final value to 95% of its final value. It is possible
to define other limits as well, but in this book we shall use these
percentages unless otherwise indicated.

Overshoot The overshoot is the percentage of the final value by which the
signal initially rises above the final value. This usually assumes that
future values of the signal do not overshoot the final value by more
than this initial transient, otherwise the term can be ambiguous.

Settling time The settling time is the amount of time required for the signal
to stay within 5% of its final value for all future times.

Frequency response

The frequency response of an input/output system measures the way in
which the system responds to a sinusoidal excitation on one of its inputs. As
we have already seen (and will see in more detail later), for linear systems the
particular solution associated with a sinusoidal excitation is itself a sinusoid
at the same frequency. Hence we can compare the magnitude and phase of
the output sinusoid as compared to the input. More generally, if a system
has a sinuoidal output response at the same frequency as the input forcing,
we can speak of the frequency response.

Frequency response is typically measured in terms of gain and phase at
a given forcing frequency, as illustrated in Figurefig:freqresp. The gain the
system at a given frequency is given by the ratio of the amplitude of the
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output to that of the input. The phase is given by the the fraction of a
period by which the output differs from the input. Thus, if we have an
input u = Au sin(ωt+ ψ) and output y = Ay sin(ωt+ φ), we write

gain(ω) =
Ay

Au
phase(ω) = φ− ψ.

If the phase is positive, we say that the output “leads” the input, otherwise
we say it “lags” the input. For linear systems, we will see that the size and
phase of the input can be set to unity and zero, respectively, simplifying this
formula.

Relating stability to performance

Other performance measures

3.5 Second Order Systems

One class of systems that occurs frequency in the analysis and design of
feedback systems are second order, linear differential equations. Because of
their ubiquitous nature, it is useful to apply the concepts of this chapter to
that specific class of systems and build more intution about the relationship
between stability and performance.

3.6 Further Reading

The field of dynamical systems has a rich literature that characterizes the
possible features of dynamical systems and describes how parametric changes
in the dynamics can lead to topological changes in behavior (these are called
bifurcations). A very readable introduction to dynamical systems is given
by Strogatz [?].

3.7 Exercises

1. (Exponential stability)


