
Cristian Giumale / Lecture Notes 1

The Markov Algorithmic Machine

Markov algorithms (MA for short, also called Normal Algorithms) stand as a model of
associative computation based on pattern matching and substitution. The model is equivalent
to other models of computation, such as Turing Machines and Lambda Calculus that
constitute mathematical foundations of various classes of programming languages. The class
of languages circumscribed by the MAs addresses mainly rule-based languages (such as
CLIPS) useful for knowledge oriented applications. However, these languages can be seen
as general purpose, offering a mix of declarative and imperative programming flavour. They
are equipped with interesting off-track data representation and control features that allow for
direct coding of high abstraction solving strategies. The solution of a problem is much on the
side of the problem description (i.e. it is declarative) rather than being distorted by the
question of how to use the control constructs of the programming language for solving the
problem.

Structure

The building blocks of a Markov Algorithmic Machine (MAM for short) are:

• the data register (DR), containing a string R of symbols,
• the control unit (CU), and
• the algorithm store (AS) that stores the Markov algorithm (MA).

DR R

CU

MAAS

Figure 1. The block structure of MAM

Data

The MAM works with strings of symbols. The data register DR stores a string, called R, from the
set {Ab ∪ Al}*, where

• Ab is the base alphabet;
• Al is the local (working) alphabet;
• Ab ∩ Al = ∅.

The sets Ab and Al cannot contain reserved symbols that are used to encode MAM algorithms.
The data register has an unlimited capacity and extends to the right as much as necessary.

The initial string in DR (before the algorithm stored in AS starts) and the final string in DR (after
the al the algorithm terminates) must be in Ab*. The string from DR can contain symbols from
Al during the execution of the algorithm only.

Cristian Giumale / Lecture Notes 2

Rules

The basic building block of a Markov algorithm is the "associative substitution rule" of the
form:

rule ::= identification_pattern -> substitution_pattern [.]
 LHS RHS
identification_pattern ::= symbol*
substitution_pattern ::= symbol*
symbol ::= constant | generic_variable | local_variable

A constant is a symbol from Ab
A local_variable is a symbol from Al

A generic_variable is a conventional symbol that at – during the execution of the Markov
algorithm – stands for a symbol from a subset of Ab. By convention, generic variables are
noted by the letter g, possibly decorated by subscript and/or superscript indices. The set of all
legitimate values a generic variable g can be bound to is called the domain of the variable and
is noted Dom(g). The following restrictions apply:

• During the execution of an MA, a generic variable from a rule can be bound to a unique

symbol from its domain while the rule is applied.

• The scope of a generic variable spans the algorithm within which it appears.

• Any generic variable from its RHS must also occur in the LHS of a rule.

Note that a rule can be textually terminated by a dot. Such a rule is a terminal rule. If applied
(see the comments below on how the control unit works) it stops the MAM.

Algorithms

A Markov algorithm is mainly an ordered set of rules, known as the body of the algorithm,
enhanced with declarations that:

• structure Ab into subsets and
• specify the domains of the generic variables used in the body of the algorithm.

By convention an algorithm is described as follows:

algorithm ::= name base_alphabet_declaration;
 [generic_var_declaration;]*

 [label: rule;]*
end [name]

base_alphabet_declaration ::= ([set [, set]

*])
set ::= subset_of_Ab | (set) | set set_constructor set

subset_of_Ab ::= subset_name | {constant [,constant]
*}

set_constructor ::= ∪ | ∩ | \
generic_var_declaration ::= set generic_var [, generic_var]*
label ::= natural_number

Rules are numbered according to their position in the algorithm. We assume that the first rule
has the label 1 whereas the i-th rule has the label i.

Cristian Giumale / Lecture Notes 3

By convention, a symbol that occurs in a rule and that is not declared as a constant from Ab is
considered a local variable.

The syntax of an MA is of little importance as far as its textual description makes it clear which
are the domains of generic variables and which is the role of the symbols used in the rules of
the algorithm (constants from Ab, local variables, generic variables). As an example, the
algorithm set_difference removes from the string R (stored in DR) all symbols that are in the
set B. When the algorithm terminates the R contains symbols from A\B only.

set_difference(A,B); B g1;
 1: g1->;
 2: ->.;
end

The Control Unit (CU)

The behaviour of the control unit relies on two concepts: rule applicability and rule application
(or rule firing).

Definition 1. (rule applicability)
Let r: a1 a2 ... an -> b1 b2 ... bm be a rule of a Markov algorithm with the alphabet
Ab∪Al and the generic variables G. The rule r is applicable if and only if there is a substring
c1 c2 ... cn in DR such that for each i∈1..n precisely one of the following conditions
holds:

1. ai∈Ab ∧ ai=ci;
2. ai∈Al ∧ ai=ci;
3. ai∈G • (∀j∈1..n | aj=ai • cj∈Dom(ai) ∧ cj=ci), i.e. the variable ai is bound

to a unique value from its domain.

Definition 2. (rule application)
Let r: a1 a2...an -> b1 b2...bm be a rule of a Markov algorithm with the alphabet Ab∪Al
and the generic variables G. Let s: c1 c2...cn be a substring in DR which makes the rule
applicable. The application of r on s is the substitution of s by a substring q1 q2...qm
computed from the string b1 b2 ... bm in the following way:

1. qi=bi, if bi∈ Ab;
2. qi=bi, if bi∈Al;
3. qi=cj, if bi∈G ∧ bi=aj.

Example. Let Ab= {1,2,3}, Al= {x,y}, Dom(g1)={2}, Dom(g2)= Ab and consider that the
string in the data register DR is R= 1111112x2y31111. The rule r: 1g1xg1yg2 -> 1g2x is
applicable. The string that is matched by the identification pattern of the rule is 12x2y3 and
the values bound to the generic variables are g1←2, g2←3. Before the application (the rule r
is applicable but is not yet applied) the matching of rule r against the string R is as shown
below.

 R: 11111 1 2 x 2 y 3 1111
 r: 1 g1 x g1 y g2 -> 1g2x

After the application of the rule (the rule r is effectively applied) the string R is:

R: 1111113x1111

Cristian Giumale / Lecture Notes 4

Note that there is a major difference between the notions of applicability and application. A
rule can be made applicable by more than one substring from DR. Indeed, DR can contain
several substrings that match the identification pattern of the rule. However, the rule is applied
for only one substring that made it applicable.

The following convention eliminates the ambiguity of which matched substring fires the rule: if
there are several strings that trigger the rule (made it applicable) then the rule is fired
(applied) for the leftmost triggering string from DR.

The CU of a MAM is wired for a very simple control strategy of executing an MA. In the control
algorithm below, Rules is an ordered set that designates the rules from the body of the
executed Markov algorithm, and R is the string from DR.

 control(R,Rules) {
 i:= 1; n := card(Rules);
 CU_status := running;
 while i ≤ n and CU_status = running
 {
 r := the i-th rule from Rules;
 if r is applicable then
 {
 R:= fire the rule r;
 // application of r has side effects on R

 if r is a terminal rule
 then CU_status := terminate
 else i:= 1
 }
 else i:=i+1
 }
 if CU_status = terminate
 then return R
 else error: the algorithm is blocked
 }

The control algorithm above shows that the rules of an algorithm are NOT executed
sequentially. They are only tested sequentially for applicability. If a non-terminal rule is
applied, MAM resumes the testing of rule applicability from the top of algorithm's body (rule
#1). The execution strategy is similar to that of repeatedly pushing the contents of DR through
a layered sieve as in figure 2.

 rule #n

rule #1

first applicable rule
rule #k Apply rule

test applicability

R

Figure 2. The CU control strategy

Layer #k of the sieve corresponds to rule #k from the algorithm. If the contents of DR triggers
the layer #k, then the rule #k is applied, DR is updated by substitution, and then the contents
of the resulting DR is pushed once more into the device at the top of the layered sieve.

Cristian Giumale / Lecture Notes 5

A Markov algorithm does not rely on any of the conventional control mechanisms
(sequencing, conditional execution, looping) provided by the conventional programming
languages. The only actions that are performed are pattern matching (parameterised string
identification, from left to right in DR) and textual substitution. The control is data-driven.
However, MAM is equivalent as far as the computation power is concerned to a Turing
machine. Said in other words, a problem solved using a Turing machine can also be solved
by MAM and vice-versa. Since the class of number theoretic functions that are Turing
computable is the class of recursive functions, it follows that MAM can solve any problem the
mathematical model of which is a recursive function.

An example

As a simple Markov algorithm consider reversing a string made of symbols from a set A. The
algorithm uses as local variables two symbols a,b ∉ A.

reverse(A); A g1,g2;
 1: ag1g2 -> g2ag1;
 2: ag1 -> bg1;
 3: abg1 -> g1a;
 4: a ->.;
 5: -> a;
end reverse

Before the start of reverse, consider that the content of DR is the string NOW. The execution
of the algorithm follows the steps below. Each step corresponds to the application of a rule
and is represented as:

string R before rule application – rule label -> string R after the rule application

R: NOW -5-> aNOW -1-> OaNW -1-> OWaN -2-> OWbN
 -5-> aOWbN -1-> WaObN -2-> WbObN
 -5-> aWbObN -2-> bWbObN
 -5-> abWbObN -3-> WabObN -3-> WOabN -3-> WONa -4->
 WON

	An example

