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Lazy Evaluation and Parameter Transfer 
 
Scheme comes with two interesting predefined functions: delay and force. The basic 
purpose of delay is to postpone the evaluation of an expression. The result of the application 
(delay expression) is an object called promise. The delayed expression is packed 
unevaluated within the promise. The role of force is to perform the evaluation of a promise 
and to return the result of the promise that is precisely the result of the expression packed in 
the promise. Therefore, evaluating (or forcing) a promise means evaluating the delayed 
expression according to the following rules: 
 
• The delayed expression is evaluated once only, when the promise is forced for the first 

time. The value obtained is the first value of the promise.  
• When the promise is subsequently evaluated, the result returned is the first value of the 

promise. 
 
Obviously, once available, the first value of the promise must be cached within the promise. 
Therefore, a promise has a state, and forcing the promise for the first time has side effects. 
Moreover, observe that the first value of the promise is the result returned by the first 
completed force applied on the promise. Consider the toy example, where set! is the 
assignment operator i.e. 

(set! variable expression) 
 
binds the variable to the value of the expression. 
 
(define counter 0) 

 
 
 
 

Delayed expression 

(define toy  
  (delay  (if (< counter 3)  
              (begin (set! counter (+ counter 1)) 
                     (force toy) 
                     counter) 
              100))) 
 
(force toy) 
 
The value of the delayed expression while the promise toy is forced is shown in table 1. 
Notice that the first completed force corresponds to counter=3 and the value returned by 
this force operation is 100. This is the first value of the promise and it should stay 
unmodified. Notice also that when this value is computed there are other three incomplete 
force operations under way. The results corresponding to these subsequently completed 
force operations are discarded.  
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• Saving the current computational context of the delayed expression. When the promise is 
forced, the expression must evaluate in its own original computational environment. For 
example, the delayed expression in the example above must see the top-level variable 
counter. 

• Saving and preserving the result of the first evaluation. 
• Distinguishing between the first value of the promise and its subsequent values. 
 
Consider that a function called make-promise constructs a promise for a delayed 
expression. Then saving the computational context of the expression is the easiest 
problem. The expression is closed within an 0-ary function and make-promise is applied 
onto this closure. Therefore, we define the expression (delay expression) to have the 
same meaning as the call  (make-promise (lambda () expression)). This effect can be 
obtained using the following macro-definition1: 
 
(define-macro delay 
  (lambda (expression) 
      `(make-promise (lambda () ,expression)))) 
 
In general, a macro-definition has the format 
  

(define-macro name function-expr) 
 
Considering that F is the result of the function-expr, the call of the macro proceeds as 
follows: 

1. The unevaluated arguments are transferred to F.  
2. The result R returned by F is substituted for the macro call in the computational 

environment of the call. 
3. The computation of the macro call proceeds with the evaluation of the result R. 

 
The macro call (delay expression) then is equivalent to the function call (make-promise 
(lambda () expression)). In order to solve the other two problems related to the 
evaluation of a promise, we have to consider the way make-promise works. The function can 
be defined as follows. 
 
  (define make-promise 
    (lambda (closure) 
      (let ((result-ready? #f)   
            (result #f)) 

        (lambda () 
          (if result-ready? 
              result 
              (let ((x (closure))) 
                (if result-ready? 
                    result 
                    (begin (set! result-ready? #t) 
                           (set! result x) 
                           result)))))))) 

promise 

                                                      
1 The macro-definition uses the operator ` called quasiquote. The quasiquote is useful for 
constructing a list that has some elements unknown in advance. If there is no comma within 
the list_template, the result of `list_template is the result of 'list_template. If 
,expression occurs within list_template the result of expression replaces  
,expression. within 'list_template. If ,@expression occurs within list_template, then 
the expression must evaluate to a list; the opening and closing parentheses of the list are 
stripped away and the elements of the list replace the ,@expression within 'list_template. 
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Since a promise may be recursive, forcing such a promise may cause the promise to be 
subsequently forced before its first value is known (see the toy). This requires testing for the 
result-ready? flag. If the flag is true the cached result is returned and the result of the 
current evaluation of the delayed expression is ignored. In this way, the first value of the 
promise is always returned as the correct value of the promise. 
 
The result of make-promise (a promise) is an 0-ary closure. It closes the delayed expression 
– itself in the form of an 0-ary closure – and the variables result-ready? and result. These 
variables are dynamically created when make-promise is called and are hidden within the 
promise. Moreover, these variables live as long as the promise lives (the extent of Scheme 
variables is unlimited). 
 
The force function has a simple task to do: to call the promise. It is defined simply as: 
 
(define force 
    (lambda (promise)  (promise))) 
 
A computation process that uses delayed expressions whose results are cached is termed as 
lazy evaluation. In the sequel we consider two applications of lazy evaluation: streams and 
call by need. 
 
 
Streams revisited 
 
Why lazy evaluation is important when representing infinite objects? First, the part already 
computed from an infinite object need not be recomputed. Second, cyclic objects can be 
represented conveniently. For instance, consider the infinite graph in figure 1. We have to 
represent the graph in such a way that the ls links behave like physical links. Given a node, 
say n3 = (rs (rs (rs root)))), we would like to enforce the physical equality: (ls n3) 
is the same node as (rs (rs root))). 
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Figure 1 A cyclic infinite graph 
 
A node of the graph is represented as a list where the first element is the key, and the second 
and third elements are the left, respectively, the right successor of the node. The successors 
are promises, which allow for a finite representation of the graph. 
 
                  (key left_successor right_successor) 
 
 
                                  promise 
  
For clarity, we will define a basic constructor of a node and selectors of data from a node. 
 
(define node list)  ; builds a node 
(define key (lambda (node) (car node)))  
; returns the key of node 
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(define ls (lambda (node) (force (cadr node))))   
; returns the left successor of node 
(define rs (lambda (node) (force (caddr node)))) 
; returns the right successor of node 
 
The constructor of the graph is a function called gen_graph, which uses two auxiliary 
constructors:  

• even for a node whose ls link goes back to the predecessor node in the graph. For being 
able to satisfy the node identity requirement, even gets its predecessor as a parameter. 
The predecessor is cached in a promise and stays unmodified. 

• odd for a node whose ls link points to the node itself. Here again the self-pointer is 
cached in a promise.  

 
Not only the graph is like a physical pointer structure but, moreover, once a node is computed 
it need not be recomputed. 
 
(define gen_graph 
  (lambda (k f) 
    (letrec ((even (lambda (k predecessor)  
                     (node k (delay predecessor) (delay (odd (f k)))))) 
             (odd (lambda (k)  
                    (letrec ((this (node k (delay this)  
                                           (delay (even (f k) this))))) 
                      this)))) 
      (odd k)))) 
 
(define root (gen_graph 1 (lambda (x) (+ x 1)))) 
 
(let ((n3 (rs (rs (rs root)))))   
   (and (eq? (ls n3) (rs (rs root)))  
        (eq? (ls (ls n3)) (rs (rs root))))) 
#t 
 
 
Parameter transfer modes 
 
The normal-order evaluation and applicative-order evaluation have several variations in 
programming: call by value, call by sharing, call by copying, call by reference, call by name, 
call by need.   
 
Call by value. The value of the argument is assigned to the corresponding formal parameter. 
The formal parameter plays the role of a temporary variable used within the body of the 
function. 
 
Call by sharing is a variant of call by value. It is used in languages such as Scheme, Lisp, 
ML where the objects are handled by implicit and explicit references. A reference is like a 
pointer to the referred object. What is transferred is the pointer. In this way the called function 
and the calling environment share the referred object. The modification of the formal 
parameter is not felt in the calling environment. Nevertheless, the modifications performed on 
the referred (pointed) object are felt in the calling environment.  
 
(define L '(a b c)) 
(define fun (lambda (FL) (set! FL ‘(x)) FL)) 
 
(fun L) 
(x) 
L 
(a b c) 
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The function fun modifies the value of its binding variable FL. The modification is not felt at 
the top-level. 
 
(define foo (lambda (FL) 
              (append! FL '(d e)))) 
(foo L) 
(a b c d e) 
L 
(a b c d e) 
 
The function foo appends destructively2 the list referenced by FL and the local list (d e). 
The first list, referenced by FL, is modified and the modification is felt at the top-level. 
 
Some languages work with explicit references, i.e. variables can take references as values of 
a “reference” type. An explicit reference is like a container that stores the referred object. If a 
function has a formal parameter of a “reference” type then what is transferred on call is the 
container itself. If modifying the formal parameter means modifying the contents of the 
container bound to the formal parameter, then the effect will be felt in the calling environment. 
As an example, consider the Caml example below that uses explicit references.  
 
let r = ref 1;  
-: int ref = ref 1 
 
A reference to the object "integer 1" has been created. The reference is a container which 
stores the object "integer 1". The value of the variable r is the reference i.e. the container.  
 
let f = fun(x) -> x:=!x+1; 
f: int ref -> unit = <fun> 
 
The variable f is bound to a function. The function takes a reference to an integer (a 
container that stores an integer) and modifies the value referred (the contents of the 
container). Here !x means the value referred by the reference bound to x; x:=expr means 
“store the value of expr into the reference bound to x”, in other words store the value of expr 
into the container bound to x. 
 
f(r);; 
!r;; 
-: int ref = 2 

side effect 
                      

f(r)
x    

1

r 

1
  

fun         ->  1+1

2

 
 
 
 
 
 
 
 
 

 
 
 

same container

Figure 3. Working with explicit references 
 
The argument of f(r) is the reference bound to r. During the evaluation of f(r) the top-
level variable r and the formal parameter x share the same value: the same container that 
                                                      
2 The cdr field of the last cell is modified to point to the list (d e). 
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stores an integer (see figure 3). The modification performed by f, i.e. replacing 1 by the result 
of 1+1 in the reference, is felt at the top-level. Implicitly the object referred by r will be 
different although the value of r (the container standing as the reference) is not modified. 
 
Call by copying. The value of the argument is copied into the formal parameter when the 
function is called and, eventually, back to the argument when the function returns (the 
function has side effects). According to the copying actions performed the formal parameters 
can be classified as: 
 

• in (the value of the argument is copied into the corresponding formal parameter 
when the function/procedure is applied); 

• out (the value of the formal parameter is copied to the actual parameter when the 
function/procedure returns), and  

• inout (equivalent to in and out).   
 
See the textbook, section Parameter Modes in ADA for an interesting discussion on call by 
copying and the importance of the way it is implemented). 
 
Call by reference. The address of the argument is transferred. The argument does not 
necessarily need be a variable (as required in Pascal, for example). If the argument is an 
expression a temporary variable is created to hold the value of the expression and the 
address of the variable is passed to the called function/procedure. The modifications of the 
formal parameter in the function/procedure body are felt in the calling environment. The call 
has side effects. 
 
Call by name. The effect is as the unevaluated argument is textually "substituted" for the 
formal parameter in the body of the function. Each time the value of the formal parameter is 
needed the argument is evaluated. The implementation avoids substitution by using the 
address of an anonymous subroutine, called thunk, corresponding to the unevaluated 
argument. Each time the value of the argument is needed the thunk is executed. The thunk is  
like a closure which packs the argument.  
 
However, although closures can be used to simulate the call by name, a subtle difference 
exists. In the call by name the argument is evaluated in the referencing context of the formal 
parameter it replaces. Therefore, the computational environment of the argument is the 
computational environment of the formal parameter replaced. If the argument is implemented 
as a closure, the referencing context of the closure is that corresponding to the closure 
construction.  
 
To clarify the call by name and the discussion above, consider the Jensen mechanism, used 

to compute the sum . The function sum is written in an ad-hoc C, considering that 

the parameter term is transferred by name. 

∑
=

it

x
term

lim

1

 
              int sum (by_name int term, int limit) { 
                 int x,s=0; 
                 for(x=1; x <=limit; x++) s += term; 
                 return s; 
              } 
 
The call sum(x*x+2*x+3,10) is equivalent to executing the function body shown below, 
where the formal parameter term is macro expanded by textually substituting it by the 
unevaluated argument x*x + 2*x+3. 
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              int x,s=0; 
              for(x=1; x <=10; x++) s += x*x + 2*x+3; 
              return s; 
 
Notice that the variable x from the argument is - by force of textual substitution - the same x 
from the body of the function. Remember that the argument is evaluated in the referencing 
context of the formal parameter it replaces. The function call sum(x*x+2*x+3,10) computes 

)32(
10

1

2 ++∑
=

xx
x

 

 
The function sum can be simulated in Scheme by a function that gets 0-ary closures as 
arguments. The closure stop tests if x > limit; the closure next increments x by 1 and as 
then returns itself as the result; the closure term computes x2+2x+3. Notice the essential 
difference from the call by name. In the simulated function the variable x does not belong to 
sum. It is local to the referencing context of the functions stop, term and next. 
  
(define sum 
  (lambda (stop term next) 
    (if (stop) 0 (+ (term) (sum stop term (next)))))) 
 
(define sum_init 
  (lambda (limit) 
    (letrec ((x 1) 
             (stop (lambda() (> x limit))) 
             (next (lambda() (set! x (+ x 1)) next)) 
             (term (lambda() (+ (* x x) (* 2 x) 3)))) 
      (sum stop term next)))) 
 
(sum_init 10) 
525 
 
The call by name coincides with the “call by closure” only when: 

• The scope of the variables is static and the applied function does not use variables 
whose names coincide with the names of the free variables from the argument. 

• The scope of the variables is dynamic. 
 
The call by name has historical roots in Algol-60, where it was the default parameter transfer 
mode, and helps achieving subtle effects by apparently simple computations. However, in 
practical situations call by name is inefficient, as proved by the problem below. 
 
Let’s compute (power x n) = xn using the formula: x2n = (x2)n and  x2n+1 = x (x2)n. 
The function must finish in Θ(log2 n) steps. Assume that the parameter x is transferred by 
name, here perfectly simulated by transferring a closure. 

 
(define power   
  (lambda(x n) 
    (cond ((= n 0)  1) 
          ((= n 1) (x)) 
          ((odd? n) (* (x) (power (lambda() (* (x) (x))) (quotient n 2)))) 
          (else (power (lambda() (* (x) (x))) (quotient n 2)))))) 
 
(define x 2) 
 
(power (lambda() (display "eval ") (+ x 1)) 8) 
eval eval eval eval eval eval eval eval 
6561 
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For the call (power (lambda()(+ x 1)) 8) there must be exactly 3 steps of computation. 
Unfortunately, the call by name spoils the speed of the algorithm. The expression (+ x 1) is 
evaluated 8 times. The hidden complexity of the function is Θ(n) instead of the apparent 
Θ(log2 n).  
 
Call by need. A promise is built from the unevaluated argument and the address of the 
promise is transferred. Each time the value of the argument is needed, the promise is 
evaluated. The argument is effectively evaluated once only, the first time its value is needed. 
 
Consider rewriting the function power such as the parameter x is transferred by need. For the 
call (power (delay (+ x 1)) 8) the expression  (+ x 1) is evaluated once only. 
 
(define powerr   
  (lambda(x n) 
    (cond ((= n 0)  1) 
          ((= n 1) (force x)) 
          ((odd? n)  
           (* (force x)  
              (powerr (delay (* (force x) (force x))) (quotient n 2)))) 
          (else (powerr (delay (* (force x) (force x))) (quotient n 2)))))) 
 
(define x 2) 
(powerr (delay (begin (display "eval ") (+ x 1))) 8) 
eval 
6561 
 
The call by need is a safe and efficient way of transferring parameters when writing non-strict 
functions. It also is essential for representing objects, eventually infinite, in a functional way, 
yet simulating the effect of physical pointers. 
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Figure 2. A finite graph and two possible representations. 
 

Consider the finite graph in figure 2a. Using lazy evaluation, the graph can be represented 
exactly as in figure 2a.  
 
(define root1 
  (letrec ((a (delay (list 1 b a))) 
           (b (delay (list 2 a b)))) 
    (force a))) 
 
(define ls (lambda (node) (force (cadr node)))) 
(define rs (lambda (node) (force (caddr node)))) 
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We have the physical equalities: 
 
(and (eq? (ls (ls root1))  root1)  (eq? (rs root1) root1)   
     (eq? (ls root1) (rs (ls root1)))) 
#t 
 
On the other hand we can represent the graph in a pure functional style, as below. 
 
(define root1 
  (letrec ((a (lambda() (list 1 b a))) 
           (b (lambda() (list 2 a b)))) 
    (a))) 
 
(define ls1 (lambda (node) ((cadr node)))) 
(define rs1 (lambda (node) ((caddr node)))) 
 
(and (eq? (ls (ls root1))  root1) 
     (eq? (rs root1) root1) 
     (eq? (ls root1) (rs (ls root1)))) 
#f 
 
What is the effect of this representation is illustrated in figure 2b. Each time we are advancing 
on an ls or an rs link we are creating brand new nodes. It is like unfolding forever the finite 
graph. 
 
 
An application: lazy problem solving by searching 
 
Consider a problem which can accept many solutions, eventually an infinity of solutions. The 
goal is to write a solution generator. A generator is a function which gets an integer n and 
returns the list of the next n solutions of the problem. In fact the generator is a closure which 
closes the stream of the problem solutions. 
 
For sake of brevity we consider that the problem is solvable by breadth-first search, although 
there is no restriction on the search strategy that is used. The conventional code for the 
breadth-first search is: 
 
(define breadth_search 
  (lambda (ini_state  expand  is_solution) 
    (letrec ((search  
              (lambda (states)  
                (if (null? states) '() 
                    (let ((state (car states)) 
                          (states (cdr states))) 
                      (if (is_solution state) state 
                          (search (append states (expand state))))))))) 
      (search (list ini_state))))) 
 
The function breadth_search has the following parameters: ini_state – the initial state of 
the problem; expand – a function that gets a state and returns the list of the successor 
states; is_solution - a predicate that decides if a state is a solution. The function returns 
the first solution found. What if you would like to see some more solutions, and you do not 
know in advance how many? 
 
The trick is to build the stream of all the problem solutions. A term of the stream is 

(solution . the_continuation_of_the_search) 

where the_continuation_of_the_search is a function that can build the next stream term, 
i.e. the pair of the next solution and the search continuation mechanism. As a matter of fact 
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the_continuation_of_the_search is a promise that closes the entire computation status of 
the current search process. 
 
(define lazy_breadth_search 
  (lambda (ini_state expand is_solution) 
    (letrec ((search  
              (lambda (states)  
                (if (null? states) '() 
                    (let ((state (car states)) (states (cdr states))) 
                      (if (is_solution state)  
                          (cons state  
                                (delay (search (append states  
                                                       (expand state))))) 
                          (search (append states (expand state))))))))) 
      (search (list ini_state))))) 
 
The expression  
               (cons state  
                     (delay (search (append states (expand state)))))  
 
from the function lazy_breadth_search is doing the job. The promise is (delay (search 
(append states (expand state)))) and closes the continuation of the search process. 
 
Building the stream of palindromes longer than a minimum given length, and made with 
elements from a list of symbols, is now easy. First we consider that a palindrome is 
represented as a list, e.g. (a b b a) is a palindrome of length four. Second we build the 
stream of palindromes calling the lazy_breadth_search with the appropriate parameters.  
 
(define palindromes 
  (lambda (symbols min_length) 
    (lazy_breadth_search  
                     '() 
                     (lambda(state) (map (lambda(s) (cons s state)) symbols) 
                     (lambda(state) (and (equal? state (reverse state)) 
                                         (>= (length state) min_length)))))) 
 
The is_solution predicate corresponds to the anonymous function 
 
       (lambda(solution)  
              (and (equal? state (reverse solution)) 
                   (>= (length solution) min_length)))))) 
 
which tests if a potential solution (a list) is equal to its reversed format and if it is of the 
required length. 
 
The expand function corresponds to 
 
        (lambda(state) (map (lambda(s) (cons s state)) symbols) 
 
and uses the Scheme predefined high-order function map. What map does is to take a function 
f and a list (e1 e2 . . . en), and to compute the list ((f e1) (f e1) . . .(f en)) 
 
The initial state of the search process is obvious: the empty palindrome, i.e. the empty list 
'(). 
 
The generator of palindromes is built using a function called gen_gen. The call  (gen_gen 
stream) returns a generator of the stream. Recall that the generator is a function that gets a 
number N and returns the list of the next N terms from the stream. The generator uses two 
auxiliary functions that work on streams: take and drop.  
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; (take N stream) returns the list of the  
; first N elements of the stream. 
; _____________________________________________________ 
(define take 
  (lambda(n stream) 
    (cond ((= n 0) '()) 
          ((null? stream) '()) 
          (else (cons (car stream) (take (- n 1) (force (cdr stream)))))))) 
 
 
; (drop N stream) returns the stream resulted 
; from cutting off the first N elements of the stream. 
; _____________________________________________________ 
(define drop 
  (lambda(n stream) 
    (cond ((= n 0) stream) 
          ((null? stream) '()) 
          (else (drop (- n 1) (force (cdr stream))))))) 
 
 
(define gen_gen 
  (lambda (stream) 
    (lambda (n)  
      (let ((sol (take n stream))) 
        (set! stream (drop n stream)) 
        sol)))) 
 
 
 
; A generator of palindromes 
; __________________________ 
 
(define gen (gen_gen (palindromes '(A B C) 4))) 
 
(gen 4) 
((a a a a) (a b b a) (a c c a) (b a a b)) 
 
(gen 3) 
((b b b b) (b c c b) (c a a c)) 
 
(gen 7) 
((c b b c) 
 (c c c c) 
 (a a a a a) 
 (a a b a a) 
 (a a c a a) 
 (a b a b a) 
 (a b b b a)) 
 
(gen 9) 
((a b c b a) 
 (a c a c a) 
 (a c b c a) 
 (a c c c a) 
 (b a a a b) 
 (b a b a b) 
 (b a c a b) 
 (b b a b b) 
 (b b b b b)) 
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