Propositional Logic, SAT, NP-complete problems Algorithms and Complexity Theory

Matei Popovici1

¹POLITEHNICA University of Bucharest Computer Science and Engineering Department, Bucharest, Romania

December 20, 2012

Let $V = \{x, y, z, ...\}$ be a finite set whose elements we call **variables**.

Let $V = \{x, y, z, ...\}$ be a finite set whose elements we call **variables**.

Definition (Formula - Syntax)

A formula over V is defined as follows:

• Every element of *V* is a formula (atomic formula).

Let $V = \{x, y, z, ...\}$ be a finite set whose elements we call **variables**.

Definition (Formula - Syntax)

A formula over V is defined as follows:

- Every element of V is a formula (atomic formula).
- \top and \bot are formulae

Let $V = \{x, y, z, ...\}$ be a finite set whose elements we call **variables**.

Definition (Formula - Syntax)

A formula over V is defined as follows:

- Every element of V is a formula (atomic formula).
- \top and \bot are formulae
- If φ is a formula, then $\neg \varphi$ is also a formula

Let $V = \{x, y, z, ...\}$ be a finite set whose elements we call **variables**.

Definition (Formula - Syntax)

A formula over V is defined as follows:

- Every element of V is a formula (atomic formula).
- \top and \bot are formulae
- If φ is a formula, then $\neg \varphi$ is also a formula
- If $\varphi_1, \ldots, \varphi_k$ are formulae, for $k \ge 2$, then:

Let $V = \{x, y, z, ...\}$ be a finite set whose elements we call **variables**.

Definition (Formula - Syntax)

A formula over V is defined as follows:

- Every element of V is a formula (atomic formula).
- \top and \bot are formulae
- If φ is a formula, then $\neg \varphi$ is also a formula
- If $\varphi_1, \ldots, \varphi_k$ are formulae, for $k \ge 2$, then:

• $(\varphi_1 \land \ldots \land \varphi_k)$ is a formula. We also write

$$\bigwedge_{1 \le i \le k} \varphi_i$$

Let $V = \{x, y, z, ...\}$ be a finite set whose elements we call **variables**.

Definition (Formula - Syntax)

A formula over V is defined as follows:

- Every element of V is a formula (atomic formula).
- \top and \bot are formulae
- If φ is a formula, then $\neg \varphi$ is also a formula
- If $\varphi_1, \ldots, \varphi_k$ are formulae, for $k \ge 2$, then:
 - $(\varphi_1 \land \ldots \land \varphi_k)$ is a formula. We also write $\bigwedge \varphi_i$
 - $(\varphi_1 \vee \ldots \vee \varphi_k)$ is a formula. We also write $\bigvee \varphi_i$

 $1 \le i \le k$

 $1 \le i \le k$

Let $V = \{x, y, z, ...\}$ be a finite set whose elements we call **variables**.

Definition (Formula - Syntax)

A formula over V is defined as follows:

- Every element of V is a formula (atomic formula).
- \top and \bot are formulae
- If φ is a formula, then $\neg \varphi$ is also a formula
- If $\varphi_1, \ldots, \varphi_k$ are formulae, for $k \ge 2$, then:
 - $(\varphi_1 \land \ldots \land \varphi_k)$ is a formula. We also write $\bigwedge \varphi_i$
 - $(\varphi_1 \lor \ldots \lor \varphi_k)$ is a formula. We also write $\bigvee \varphi_i$

Abbreviations:

•
$$\varphi \to \psi$$
 is $\neg \varphi \lor \psi$
• $\varphi \leftrightarrow \psi$ is $\varphi \to \psi \land \psi \to \varphi$

 $1 \le i \le k$

 $1 \le i \le k$

• The meaning of **atomic formulae** depends on their interpretation in the current world [1]

- The meaning of **atomic formulae** depends on their interpretation in the current world [1]
- The meaning of more **complex formulae** depends on the meaning of their components [1]

- The meaning of **atomic formulae** depends on their interpretation in the current world [1]
- The meaning of more **complex formulae** depends on the meaning of their components [1]

Definition (Interpretation)

A function $I: V \to \{0, 1\}$, assigning a **truth value** to each variable in *V* is called an interpretation over *V*.

- The meaning of **atomic formulae** depends on their interpretation in the current world [1]
- The meaning of more **complex formulae** depends on the meaning of their components [1]

Definition (Interpretation)

A function $I: V \to \{0, 1\}$, assigning a **truth value** to each variable in *V* is called an interpretation over *V*.

We also write $I = \{x \leftarrow 0\}$ instead of I(x) = 0.

Definition (Truth value of a formula)

Let $\varphi_1, \ldots, \varphi_k$ be *k* formulae and *I* be an interpretation over *V*, respectively. Also, let $x \in V$. Then:

Definition (Truth value of a formula)

Let $\varphi_1, \ldots, \varphi_k$ be *k* formulae and *I* be an interpretation over *V*, respectively. Also, let $x \in V$. Then:

• $I \models x$ iff I(x) = 1

Definition (Truth value of a formula)

Let $\varphi_1, \ldots, \varphi_k$ be *k* formulae and *I* be an interpretation over *V*, respectively. Also, let $x \in V$. Then:

•
$$l \models x$$
 iff $l(x) = 1$

• $I \models \neg \varphi_1$ if it is not the case that $I \models \varphi_1$

Definition (Truth value of a formula)

Let $\varphi_1, \ldots, \varphi_k$ be *k* formulae and *I* be an interpretation over *V*, respectively. Also, let $x \in V$. Then:

•
$$l \models x$$
 iff $l(x) = 1$

- $I \models \neg \varphi_1$ if it is not the case that $I \models \varphi_1$
- $I \models (\varphi_1 \land \ldots \land \varphi_k)$ iff $I \models \varphi_i$, for all $1 \le i \le k$

Definition (Truth value of a formula)

Let $\varphi_1, \ldots, \varphi_k$ be *k* formulae and *I* be an interpretation over *V*, respectively. Also, let $x \in V$. Then:

•
$$l \models x$$
 iff $l(x) = 1$

- $I \models \neg \varphi_1$ if it is not the case that $I \models \varphi_1$
- $I \models (\varphi_1 \land \ldots \land \varphi_k)$ iff $I \models \varphi_i$, for all $1 \le i \le k$
- $I \models (\varphi_1 \lor \ldots \lor \varphi_k)$ iff $I \models \varphi_i$, for some $1 \le i \le k$

Definition (Truth value of a formula)

Let $\varphi_1, \ldots, \varphi_k$ be *k* formulae and *I* be an interpretation over *V*, respectively. Also, let $x \in V$. Then:

•
$$l \models x$$
 iff $l(x) = 1$

- $I \models \neg \varphi_1$ if it is not the case that $I \models \varphi_1$
- $I \models (\varphi_1 \land \ldots \land \varphi_k)$ iff $I \models \varphi_i$, for all $1 \le i \le k$
- $I \models (\varphi_1 \lor \ldots \lor \varphi_k)$ iff $I \models \varphi_i$, for some $1 \le i \le k$

Whenever $I \models \varphi$, we say that *I* satisfies φ or φ is true under *I*.

Definition (Truth value of a formula)

Let $\varphi_1, \ldots, \varphi_k$ be *k* formulae and *I* be an interpretation over *V*, respectively. Also, let $x \in V$. Then:

•
$$l \models x$$
 iff $l(x) = 1$

- $I \models \neg \varphi_1$ if it is not the case that $I \models \varphi_1$
- $I \models (\varphi_1 \land \ldots \land \varphi_k)$ iff $I \models \varphi_i$, for all $1 \le i \le k$
- $I \models (\varphi_1 \lor \ldots \lor \varphi_k)$ iff $I \models \varphi_i$, for some $1 \le i \le k$

Whenever $I \models \varphi$, we say that I satisfies φ or φ is true under I.

Definition (Satisfiability)

We say a formula φ is **satisfiable** iff there exists *I* such that $I \models \varphi$

Definition (Truth value of a formula)

Let $\varphi_1, \ldots, \varphi_k$ be *k* formulae and *I* be an interpretation over *V*, respectively. Also, let $x \in V$. Then:

•
$$l \models x$$
 iff $l(x) = 1$

- $I \models \neg \varphi_1$ if it is not the case that $I \models \varphi_1$
- $I \models (\varphi_1 \land \ldots \land \varphi_k)$ iff $I \models \varphi_i$, for all $1 \le i \le k$
- $I \models (\varphi_1 \lor \ldots \lor \varphi_k)$ iff $I \models \varphi_i$, for some $1 \le i \le k$

Whenever $I \models \varphi$, we say that I satisfies φ or φ is true under I.

Definition (Satisfiability)

We say a formula φ is **satisfiable** iff there exists *I* such that $I \models \varphi$

Definition (Validity)

We say a formula φ is **valid** iff for all *I*, *I* $\models \varphi$

Notice that $x \land (y \lor z)$ is not equivalent to $(x \land y) \lor z$.

Notice that $x \land (y \lor z)$ is not equivalent to $(x \land y) \lor z$.

Definition (Equivalence)

Two formulae φ and ψ over *V* are **equivalent** if, for all *I* over *V* $I \models \varphi \iff I \models \psi$

Notice that $x \land (y \lor z)$ is not equivalent to $(x \land y) \lor z$.

Definition (Equivalence)

Two formulae φ and ψ over *V* are **equivalent** if, for all *I* over *V* $I \models \varphi \iff I \models \psi$

Definition (CNF form)

Notice that $x \land (y \lor z)$ is not equivalent to $(x \land y) \lor z$.

Definition (Equivalence)

Two formulae φ and ψ over *V* are **equivalent** if, for all *I* over *V* $I \models \varphi \iff I \models \psi$

Definition (CNF form)

•
$$\varphi = \varphi_1 \land \varphi_2 \land \ldots \land \varphi_k$$
 and,

Notice that $x \land (y \lor z)$ is not equivalent to $(x \land y) \lor z$.

Definition (Equivalence)

Two formulae φ and ψ over *V* are **equivalent** if, for all *I* over *V* $I \models \varphi \iff I \models \psi$

Definition (CNF form)

•
$$\varphi = \varphi_1 \land \varphi_2 \land \ldots \land \varphi_k$$
 and,

•
$$\varphi_i = (\alpha_{i1} \lor \alpha_{i2} \lor \ldots \lor \alpha_{im})$$
 for all $1 \le i \le k$ and,

Notice that $x \land (y \lor z)$ is not equivalent to $(x \land y) \lor z$.

Definition (Equivalence)

Two formulae φ and ψ over *V* are **equivalent** if, for all *I* over *V* $I \models \varphi \iff I \models \psi$

Definition (CNF form)

•
$$\varphi = \varphi_1 \land \varphi_2 \land \ldots \land \varphi_k$$
 and,

•
$$\varphi_i = (\alpha_{i1} \lor \alpha_{i2} \lor \ldots \lor \alpha_{im})$$
 for all $1 \le i \le k$ and,

•
$$\alpha_{ij} = x$$
 or $\alpha_{ij} = \neg x$, with $x \in V$

Notice that $x \land (y \lor z)$ is not equivalent to $(x \land y) \lor z$.

Definition (Equivalence)

Two formulae φ and ψ over *V* are **equivalent** if, for all *I* over *V* $I \models \varphi \iff I \models \psi$

Definition (CNF form)

A formula over V, φ is in **Conjunctive Normal Form** iff:

•
$$\varphi = \varphi_1 \land \varphi_2 \land \ldots \land \varphi_k$$
 and,

•
$$\varphi_i = (\alpha_{i1} \lor \alpha_{i2} \lor \ldots \lor \alpha_{im})$$
 for all $1 \le i \le k$ and,

•
$$\alpha_{ij} = x$$
 or $\alpha_{ij} = \neg x$, with $x \in V$

Proposition

Every formula φ is equivalent to a formula in CNF form.

Definition (SAT)

Let φ be a formula in CNF form. The problem of deciding whether φ is **satisfiable** is called **SAT**.

Definition (SAT)

Let φ be a formula in CNF form. The problem of deciding whether φ is **satisfiable** is called **SAT**.

Proposition (Cook)

SAT is NP-complete.

Definition (SAT)

Let φ be a formula in CNF form. The problem of deciding whether φ is **satisfiable** is called **SAT**.

Proposition (Cook)

SAT is NP-complete.

Proof.

- Blackboard -

Andrei Voronkov.

Logic and modeling. University Lecture: http://voronkov.com/lics.cgi, 2011.