Personalized information retrieval

Students:
Iulia Baluta
Alexandru Gorgoi
Mihnea Donciu
Madalina Ionita
Contents

• Introduction
 – Learning user's preferences
 – Methods of personalization
 – Evaluation
 – Problems

• Personalized Search
• Collaborative Search
• Personalized Social Search
• Task-based personalized search
Why personalized search?

• A typical search engine returns the same result per query for all users
• User queries are in general very short and provide an incomplete specification of individual users’ information needs
• E.g.: “canon book” can refer to religion, photography, literature or music
• Studies showed that more than 80% of people would prefer personalized search results to more general results
Gathering users' preferences

• Modeling the users’ preferences and interests
 – tracking and aggregating users’ interaction with the system

• Types:
 – users’ previous queries
 – click-through analysis
 – eye-tracking during the search session
 – relationship to other users

• Creating an user profile
Search Personalization Techniques

- Personalized query expansion
 - adding new terms to the query
 - reweighting the original query terms based on the user profile
- Adjusting search results according with users’ interests:
 - Re-ranking
 - Filtering
Evaluation Techniques

• User explicit feedback – user studies
• Users’ implicit feedback
• Bookmark-based evaluation
 – For personalized social search
 – User feedback through rating, tagging, commenting, etc.
Personalized problems

• User profiling violates user privacy
• Previous interactions might not be consistent with current needs – different context
• The benefits of personalization vary across queries
• Introduction

• **Personalized Search**
 – Strategies to improve retrieval effectiveness
 – Ontology-based personalized search
 – Query expansion using desktop data
 – Query expansion using gaze-based feedback

• **Collaborative Search**

• **Personalized Social Search**

• **Task-based personalized search**
Strategy to improve retrieval effectiveness (1)

- Model and gather user’s search history
- Construct a user profile based on the history and a general profile based on the Open Document Project category hierarchy
- Deduce appropriate categories for each user query based on the user and general profiles
- Improve Web search effectiveness by using these categories as a context for each query
Strategy to improve retrieval effectiveness (2)

• User search history:
 – queries + relevant documents + categories
 – Tree model of search records: root = query, with one or more categories as children, each category is parent node of the corresponding documents

• User profile:
 – Set of categories of terms with associated weights

• Matrix representation:
 – DT (Document-Term - a) and DC (Document-Category - b)
 – M (user profile matrix - c) is constructed from DT and DC
Strategy to improve retrieval effectiveness (3)

- Category hierarchy: general knowledge of our system extracted from *ODP*
- Inference of user’s search intention:
 - interests may change in time
 - the most recent search records are considered
User profile learning algorithms

• Computing matrix M from DT and DC

• Linear Least Square Fit ($LLSF$ or $pLLSF$): Singular Value Decomposition of DT:
 \[M = DC^T \ast U \ast \sum^+ \ast V^T \]

• Rocchio based:
 – batch ($bRocchio$):
 \[M(i, j) = \frac{1}{N_i} \sum_{k=1}^{m} DT(k, j) \ast DC(k, i) \]
 – adaptive ($aRocchio$):
 \[M(i, j)^t = \frac{N_i^{t-1}}{N_i^t} M(i, j)^{t-1} + \frac{1}{N_i^t} \sum_k DT(k, j) \ast DC(k, i) \]

• kNN: k-Nearest Neighbour computes similarity between the query and each category for the k most similar documents of DT:
 \[Sim(q, c_j) = \sum_{d_i \in kNN} Cos(q, d_i) \ast DC(i, j) \]
Mapping queries to categories

• Using user profile only (baseline)
• Using general profile only (baseline)
• Combining the 2 profiles (3 methods)

Experimental results:
 – Accuracy: pLLSF, kNN and bRocchio were the best
 – Performance: the 3 combining methods outperform the 2 baselines
 – Adaptivity: accuracy increases with the size of input data, going to 100% for all training data

• 99% of the time of processing a query is spent to retrieve documents and extract lists of documents from the result pages, 1% of the time is spent to map the queries to specific categories and to merge the lists into a final list of docs -> the algorithms are very efficient
• Introduction

• **Personalized Search**
 – Strategies to improve retrieval effectiveness
 – **Ontology-based personalized search**
 – Query expansion using desktop data
 – Query expansion using gaze-based feedback

• **Collaborative Search**

• **Personalized Social Search**

• **Task-based personalized search**
Ontology Based Personalized Search

• A user profile is created over time by analyzing surfed pages
 – associating the content with the length of the document and the time that was spent on it

• Ontology node – browsing hierarchy node – a set of documents (content)

• Documents/superdocuments are represented as weighted keyword vectors using the vector space model
User profiles

• Hierarchically structured, generated automatically, dynamic

• The files in a web browser’s cache folder are periodically characterized

• The strength of match is combined with the length of the page and the time spent on that page

• User profile convergence – the number of nodes with non zero interest values converges over time
Approaches

• Re-ranking – applying a function to the ranking numbers returned by a search engine referring to the user profiles

• Eleven point precision average evaluates ranking performance in terms of *recall* and *precision*

• *Filtering* - comparing the documents to a list of keywords that describe a user or a set of documents that the user previously judged relevant or irrelevant

• Query expansion – expanding the query with the user’s interests (very difficult)
Results

• Cache folders analyzed
• Re-ranking – performance increases of up to 8%
• The length of a surfed page can be neglected when the interest in a page is inferred (time spent on that page matters more)
• Introduction

• **Personalized Search**
 – Strategies to improve retrieval effectiveness
 – Ontology-based personalized search
 – **Query expansion using desktop data**
 – Query expansion using gaze-based feedback

• **Collaborative Search**

• **Personalized Social Search**

• **Task-based personalized search**
Personalized Query Expansion for the Web

• Improve Web search queries by expanding them with terms collected from each user’s Personalized Information Repository (PIR)
• Generating additional query keywords by analyzing user data at increasing granularity levels
• Adapting query expansion to various features of each query
Personal Information Repository

• PIR is also referred to as “Desktop”
• User’s personal collection of text documents, emails, cached web pages etc.
• All profile information is stored locally, which gives total privacy
• Web queries will be expanded with keywords extracted from user’s PIR
Query expansion using Desktop data

• Algorithms:
 – *Expanding with Local Desktop Analysis* related to expansion keywords from the PIR best hits, with 3 granularity levels: Term and Document Frequency (TF/DF); Lexical Compounds (LC); Sentence Selection (SS)
 – *Expanding with Global Desktop Analysis* relies on information from all the personal Desktop, with 2 techniques: Term Co-occurrence Statistics; Thesaurus Based Expansion

• Experiments:
 – Google vs TF/DF, LC, SS, TC, WordNet expansion
 – TF and LC produced improvements over regular search
 – All were better than Google on ambiguous queries
Introducing adaptivity

• An optimal personalized query expansion algorithm should adapt to the user’s particularities

• Adaptivity factors:
 – *Query clarity*, with metrics of: length, scope, divergence
 – *Query formulation process* by adding terms

• Experiments showed that the adaptive algorithms performed as least as well as Google

• For random queries, results are worse than for the static techniques
• Introduction
• **Personalized Search**
 – Strategies to improve retrieval effectiveness
 – Ontology-based personalized search
 – Query expansion using desktop data
 – Query expansion using gaze-based feedback
• Collaborative Search
• Personalized Social Search
• Task-based personalized search
Query Expansion Using Gaze-Based Feedback on the Subdocument Level

• Incorporating eye tracker information – keep track of document parts the user read in some way
• Fixation (200ms) and saccades – document metadata
• Identifying the precise query context by analyzing at what document parts the user looked immediately before issuing the query
Extracting query-expansion terms

• Methods:
 – Baseline - uses TF×IDF on the entire document and extracts the highest scoring terms.
 – Gaze-Filter - applies the score calculation of the baseline method (TF×IDF) only on gaze-annotated document parts
 – Gaze-Length-Filter - ignores all not gaze-annotated document parts and calculates an interest score for every viewed term \(t \)
 – Reading-Speed
Results

• Considering additional information like reading speed and coherence has a great deal of impact
• Additional information like reading speed and coherence does not seem to have high impact
• Compared to other methods for relevance feedback on the subdocument level, gaze-based feedback seems to be sufficiently precise, even though eye trackers are expensive
• Introduction
• Personalized Search
• Collaborative Search
• Personalized Social Search
• Task-based personalized search
Collaborative Search

• Passive collaboration
 – Collaborative filtering – data from similar people can be used to personalize search
 – Use click-through data from users in the same “search community” to enhance search results

• Collaborative searching
 – Users search „together” - for a common task
Discovering and Using Groups to Improve Personalized Search

• Augmenting an individual profile by using data from other people

• 2 grouping dimensions
 – Group longevity
 – How explicitly the group is formed

• Algorithm for groupization
 – Aggregates personalization scores from different group members
Group types

• Trait-based groups
 – Shared interests
 – Occupation
 – Geography
 – Demographics
• Explicit identification
 – Explicit task-based collaboration
 – Self-reported information
• Implicit identification
 – Similar desktop indices
 – Similar queries or relevance judgements
User study

• Both task-based groups and trait-based groups

• Data collection
 – Pre-cached search results listed randomly
 – Measure relevance of the result for the query: highly relevant, relevant, not relevant

• Query selection
 – Pre-generated queries
 – Email questionnaire – ask group members for query generation and have other groups measure the relevance of the results
Variations within groups

• Query selection
 – Correlation to group membership
 – People with similar queries do not have similar relevance judgments

• User profile
 – Term vectors
 – Index similarity – for common queries
 • Useful to identify membership in explicit groups
 • Not correlated to relevance judgments

• Relevance judgments
 – Would members of a group benefit from common ranking?
 – Best for task-based groups
Groupization

• On top of an existing Web search personalization system
• Groupized score = sum of personalized score of each member
• Improved results for some explicit groups: task-based, interest-based and occupational
• Best for group related queries
• Might be a challenge to apply it to implicitly identified groups
Groupization performance

![Graph showing groupization performance for different categories.](image)
• Introduction
• Personalized Search
• Collaborative Search
• Personalized Social Search
• Task-based personalized search
Social search

• Using data from Web 2.0 applications to improve search engines
• Relationships between entities in a social network such as users, documents and tags can be used to expand the knowledge about user's preferences
• Rich feedback from the user – by tagging, rating and commenting
Personalized Social Search based on User's Social Network

- Re-ranking based on relation to individuals in the social network
- 3 types of social networks
 - Familiarity-based network - people related to the user through explicit familiarity connection
 - Similarity-based network - people “similar” to the user as reflected by their social activity
 - Overall network – both relationship types
- Comparison with Topic-based personalization – based on user's related terms, aggregated from several social applications
Personalized social search

• Social search – search over “social” data gathered from Web 2.0 applications
 – Social bookmarking systems
 – Wikis
 – Blocks
 – Forums
 – Social Network Sites (SNS)

• User profile derived from user feedback (bookmarking, rating, commenting) – a very good indicator or user's interests

• Obtain user's preferences as inferred from user's related people → re-rank results
Social Network and Discovery - SaND

- An aggregation tool for information discovery and analysis over social data
- Leverages complex relationships between content, people and tags
- Builds an entity-entity relationship matrix
 - Direct relations
 - Indirect relations
Search personalization

- A user profile is constructed on the fly at login
- For a user u SaND retrieves
 - \(N(u) \) – the ranked list of users related to u
 - \(T(u) \) – the ranked list of related terms
- User profile: \(P(u) = (N(u), T(u)) \)
- Search results are re-ranked as follows

\[
S_p(q,e|P(u)) = \alpha S_{np}(q,e) + (1-\alpha)\left[\beta \sum_{v \in N(u)} w(u,v) \cdot w(v,e) + (1-\beta) \sum_{t \in T(u)} w(u,t) \cdot w(t,e)\right]
\]

- \(S_p(q,e|P(u)) \) - the personalized score of entity e to query q, given the profile of user u
- \(S_{np}(q,e) \) - the non personalized SaND score of e to q
- \(w(u,v) \) – the relationship strength of user/term v to u
Evaluation

• Bookmark-based evaluation vs user survey
• Both studies suggest that all personalization methods outperform non-personalized search
• Off-line study
 – Similarity SN and Topic-based personalization with no SN outperform Familiarity SN and Overall SN
• User survey
 – Overall SN outperforms all other personalized searches
 – All SN-based strategies significantly outperform Topic-based personalization
• Introduction
• Personalized Search
• Collaborative Search
• Personalized Social Search
• Task-based personalized search
Task-aware search personalization

• User interests change over time
• Users can have various tasks within a short timespan
• History-based personalization may impede a user's desire of discovering new topics
• A proposed solution
 – Use history-based personalization only when relevant
 – Hierarchical clustering of the user's profile → a history of user's tasks
 – Tasks range from very specific, short-term tasks to general interests
Task-based personalization

• Obtain candidate query facets representing the different aspects a query might span → obtained by clustering query results
• Retrieve top-k tasks most similar to the user query from the user's profile
• Include a task representing the current active session
• Represent query facets and tasks by a unigram language model
Task-based personalization (2)

• Determine the task/facet pair with the lowest Kullback-Leibler (KL) divergence
• If KL divergence for that pair is larger than a threshold $a \rightarrow$ previously unexplored task
• Update the query representation with terms that best discriminate the chosen query facet, while being most similar to the chosen task
• Re-rank the original result based on the KL divergence between their title/query representation and the new query representation
Task Language Model

• \(P(w \mid T) = a P(w \mid Q) + (1-a) P(w \mid B) \)
 – B – average of individual browsed documents' language models
 – Q – uniform mixtures of the task's query chains

• Query chain – a weighted sum of its constituent queries – later queries are more important

• A single query - a mixture of its query terms

• Last visited documents in a search session are given a higher weight in the clickstream language model
• User survey
• NDCG (Normalized Discounted Cumulative Gain) - for measuring the ranking quality
• Generating query facets by
 – Human labels
 – Automatic hierarchical clustering
• Selective personalization outperforms both original Google ranking and the enforced personalized
The Roles of Task Stage and Task Type

• Multi-session work tasks are often complex and consist of multiple sub-tasks (parallel or independent)
• Factors of task type and task stage can be helpful in predicting the usefulness of a document
• Eg: at the beginning of their tasks, it is less likely to start initial queries by introducing all the search terms, more synonyms and parallel terms
Metrics

• Dwell time – time between opening a document and switching or closing it
• Display time – time between opening a document and closing it
• Decision time – equivalent to the first dwell time
• Dwell time was able to predict usefulness in both tasks combined, and for both the parallel and dependent tasks
• Display time can predict usefulness in parallel and dependent tasks separately, but not in both combined
• Decision time can only predict usefulness in the dependent task
Results

• Total display time and total dwell time can be used for personalizing search for subsequent sessions in multi-session tasks

• Task stage and task type information does not necessarily need to be considered.

• Decision time can be used for personalizing search for an ongoing session as well as for subsequent sessions
Current Trends in Personalized Information Retrieval

• Contextual IR
• Collaborative filtering
• Using agents and information scent
• Combine Adaptive Hypermedia and IR approaches to deliver personalised information seeking and access
• A unified method of evaluating the personalized IR systems
Conclusions

- Search personalization significantly improves the relevance of the results
- The main challenge of personalizing search consists in accurately building an user profile
- There are three main approaches in search personalization: re-ranking, filtering and query expansion
- Creating context-aware and adaptive user profiles is currently the main topic of research