Advances in Information Retrieval

Dan Bănică
Eduard Băzăvan
Ciprian Pătru
Madi Petrăreanu
Alexandra Podiuc
Contents

- Understanding user behavior (eye tracking)
- User activity tracking
- Optimizing Search Engines using Clickthrough Data
- Using Lexical Chains for Text Summarization
- Multidocument Summarization – Centroid-based algorithm
- Graph-based Lexical Centrality
- Sentence Ordering
Understanding user behavior
Understanding user behavior

- Understand how to best satisfy the user
- Multiple studies based on eye tracking
- Users are very selective
 - How to better design a webpage?
 - How to model the attention of the user?
 - Ideally, an IR system should take this into account
 - How important is the ranking of a search engine?
Eye Tracking

- Fixations
 - The attention is directed towards a specific area of focus
 - 200-300 milliseconds (ms)

- Saccades
 - Rapid moves between fixations
 - 40-50 ms
 - Information processing is suppressed
Investigating online search

- Different task types
 - Navigational
 - Reaching a particular website
 - Informational
 - Obtaining a particular information
 - Which does not necessarily exist only on a particular site
- Users act differently depending on task type
Investigating online search

- Informational vs. Navigational tasks
 - Users spend significantly more time for solving informational tasks
 - 46 seconds, compared to 34 seconds
 - For informational tasks users spend greater proportion of their time away from the results page
 - 60%, compared to 48%
Effects of the target position

- Two scenarios:
 - Normal
 - Display the results as returned by the search engine
 - Reversed
 - Display the top 10 results in reversed order
- First ranks received the most attention in both
Effects of the target position

- The first results received more clicks in both scenarios.
- Changing results order affects success rate, increases the time on task, number of results viewed.
- Users have a strong confidence in the order returned by search engines.
User Activity Tracking
User Activity Tracking – Goal

- Automate website usability tests

- Detailed logging of actions
 - mouse movements, key presses, scrolling, window resizing etc.

- Invisible tracking – unchanged user experience

- Tracking independent of website implementation
Approaches for User Activity Logging

- **Client-based**
 - Software installation required on client site

- **Server-based**
 - HTTP requests are analyzed on server
 - Problems: AJAX applications, client-side activity

- **Proxy-based**
 - HTTP traffic passes through an HTTP proxy
Proxy-based Logging

- The proxy modifies "text/html" responses before passing them on to the client.
- The modification causes the proxy's logging JavaScript code to be loaded by the browser.
JavaScript-based Logging of User Actions

- The logging JavaScript code executes on the browser.

- Registers global event handlers: `onkeypress`, `onmousemove`, `onmouseover`, `onfocus`, `onblur`, `onresize`.

- Log data is aggregated and passed back to the proxy at regular intervals by making HTTP requests to
Log Output

- Great level of detail for a solution without installation of client-side software
- Determine which parts of the page were viewed
- Info about click/hover coordinates and the involved DOM element
Application Areas

- Web usability tests
- User profiling/usage analysis for marketing and business process improvements
- Implicit interaction, self-adapting sites
- Developing and debugging web applications
Optimizing Search Engines using Clickthrough Data

By

Thorsten Joachims
Clickthrough Data

The set of links the user considers important

Provide specific information related to the behaviour of the user

The most important links for a specific user

Easier to acquire than user feedback (use the logs of the search engines)
Clickthrough Data

Only the first \(l (l \sim 10)\) links are important

Users usually don’t consider the rest (\cite!)

For a specific user or a group of users clickthrough data could be used as training data for a ranking system
Clickthrough Data

1. Kernel Machines
 http://svm.first.gmd.de/
2. Support Vector Machine
 http://jbolivar.freeservers.com/
3. SVM-Light Support Vector Machine
 http://ais.gmd.de/~thorsten/svm_light/
4. An Introduction to Support Vector Machines
 http://www.support – vector.net/
5. Support Vector Machine and Kernel Methods References
 http://svm.research.hell – labs.com/SVMrefs.html
6. Archives of SUPPORT-VECTOR-MACHINES@JISCMAIL.AC.UK
 http://www.jiscmail.ac.uk/lists/SUPPORT–VECTOR–MACHINES.html
7. Lucent Technologies: SVM demo applet
8. Royal Holloway Support Vector Machine
 http://svm.dea.rhbnc.ac.uk/
 http://www.support – vector.net/software.html
10. Lagrangian Support Vector Machine Home Page
 http://www.cs.wisc.edu/dmi/lsvm

Figure 1: Ranking presented for the query “support vector machine”. Marked in bold are the links the user clicked on.

<table>
<thead>
<tr>
<th>retrieval function</th>
<th>bxv</th>
<th>tfc</th>
<th>hand-tuned</th>
</tr>
</thead>
<tbody>
<tr>
<td>avg. clickrank</td>
<td>6.26±1.14</td>
<td>6.18±1.33</td>
<td>6.04±0.92</td>
</tr>
</tbody>
</table>

Table 1: Average clickrank for three retrieval functions (“bxv”, “tfc” [23], and a “hand-tuned” strategy that uses different weights according to HTML
Clickthrough Data

\[\text{link}_3 \prec_{r^*} \text{link}_2 \]
\[\text{link}_7 \prec_{r^*} \text{link}_2 \]
\[\text{link}_7 \prec_{r^*} \text{link}_4 \]
\[\text{link}_7 \prec_{r^*} \text{link}_5 \]
\[\text{link}_7 \prec_{r^*} \text{link}_6 \]

\(r^* \): ranking preferred by the user (binary relation)

We can generalize this preference information,

\[\text{link}_i \prec_{r^*} \text{link}_j \]

for all pairs \(1 \leq j < i \), with \(i \in C \) and \(j \notin C \).
Learning of Retrieval Functions

Goal:

We have to find a retrieval function $r^*_f(q)$ whose results are close to r^*.

In order to calculate the similarity between any given $r^*_f(q)$ and r^*, we have to use a performance metric.

- Average Precision (binary relevance)
- Kendall’s τ

Very Simple

Good Performance Metric
Learning of Retrieval Functions (2)

Kendall’s τ

Between any two ranking functions the distance is,

$$\tau(r_a, r_b) = \frac{P - Q}{P + Q} = 1 - \frac{2 \cdot Q}{\binom{m}{2}}$$

D : Set of documents in a query result
P : # of concordant pairs in D x D
Q : # of discordant pairs in D x D
m : # of documents/links in D
Learning of Retrieval Functions (3)

Problem Definition of Learning an Appropriate Retrieval Function

For a fixed (but unknown) distribution of queries and target (user preferred) rankings the goal is to learn a retrieval function $f(q)$ for which the expected Kendall’s function

$$\tau_P(f) = \int \tau(r_{f(q)}, r^*) d \Pr(q, r^*)$$

is maximal, where $\Pr(q, r^*)$ is the distribution of queries.
Support Vector Machine (SVM) for Learning of Ranking Functions

Usually machine learning in information learning is based on binary classification.

(A document is either related to the query or not)

Since the information gathered from clickthrough data is not an absolute relevancy information we cannot use binary classification
Support Vector Machine (SVM) for Learning of Ranking Functions (2)

Using a set of queries and user ranking sets (training data) we will select a ranking function among a family (F) of ranking functions that maximizes the empirical τ.

\[
\tau_S(f) = \frac{1}{n} \sum_{i=1}^{n} \tau(r_{f(q_i)}, r_i^*).
\]
Support Vector Machine (SVM) for Learning of Ranking Functions (3)

Then, we need to find a sound family of ranking functions.

How to find an F which includes an efficient ranking function (f)?
Support Vector Machine (SVM) for Learning of Ranking Functions (4)

A set of linear ranking functions

\[(d_i, d_j) \in f_\rightarrow (q) \iff w\Phi(q, d_i) > w\Phi(q, d_j)\]

Where is a mapping onto features that describe the match between element \(d\)
Support Vector Machine (SVM) for Learning of Ranking Functions (5)

Instead of maximizing directly our goal function we can minimize the Q in our performance measure

\[\forall (d_i, d_j) \in r_1^*: \tilde{w} \cdot \Phi(q_1, d_i) > \tilde{w} \cdot \Phi(q_1, d_j) \]

...

\[\forall (d_i, d_j) \in r_n^*: \tilde{w} \cdot \Phi(q_n, d_i) > \tilde{w} \cdot \Phi(q_n, d_j) \]

The optimization problem is the following, use

\[
V(\tilde{w}, \xi) = \frac{1}{2} \tilde{w} \cdot \tilde{w} + C \sum \xi_{i,j,k}
\]

subject to:

\[\forall (d_i, d_j) \in r_1^*: \tilde{w} \Phi(q_1, d_i) \geq \tilde{w} \Phi(q_1, d_j) + 1 - \xi_{i,j,1} \]

...

\[\forall (d_i, d_j) \in r_n^*: \tilde{w} \Phi(q_n, d_i) \geq \tilde{w} \Phi(q_n, d_j) + 1 - \xi_{i,j,n} \]

\[\forall i \forall j \forall k: \xi_{i,j,k} \geq 0 \]
Experiment Setup

A meta-search engine (Striver) used for testing purposes (MSNSearch, Google, Excite, Altavista and Hotbot)

Acquires top 100 results from each search engine

Based on the learned retrieval function it selects top 50 of the 500 (may be lesser if more than one engine has found a specific document)
Offline Experiment

Using Striver 112 Queries are recorded

A huge set of features are used to calculate the description based retrieval functions

The testing is done with different values of training set queries

Results from Google and MSNSearch are used for benchmarking purposes
Offline Experiment (2)
Online Experiment

Striver is used by a group of people (20 people)

Based on these people’s queries training set of Striver is composed of 260 queries

The results are compared with results from Google, MSNSearch and Toprank (a simple meta-search engine)
More clicks means that (for Google) users clicked more links in the learned engine than they do in Google for 29 queries out of 88.

Less clicks means that (for Google) users clicked less links in the learned engine than they do in Google for 13 queries out of 88.

Table 2: Pairwise comparison of the learned retrieval function with Google, MSNSearch, and the non-learning meta-search ranking. The counts indicate for how many queries a user clicked on more links from the top of the ranking returned by the respective retrieval function.
Analysis of the Online Experiment

Since all of the users have used the engine for academic searches the learned data is good for searches in academic research topics.

But it may not give that good results for different groups of people.

We can say that learned engine is a customizable engine unlike traditional engines.
(Multidocument) Text Summarization
Summarization for text documents?

• What is Summarization?
 Summary of an original text without requiring full semantic interpretation

• Tools: Word Net thesaurus, shallow parser, POS & Brill’s tagger, Segmentation Algorithm

• Design steps:
 Segmentation (Create lexical chains)
 Identify Strong Chains
 Extract significant sentences
Cohesion and Coherence

• Cohesion = “sticking together”
 Achieved through the use of semantically related terms, references, ellipses and collocations
 Reiterations
 Collocations
 • Lexical chains are created by using semantically related words but also between sequences of related words

• Coherence
 Macro –level semantic structure of connected discourse
Cohesion vs. Coherence

• Cohesion
 Creates connections in a non-structural manner

• Coherence
 Relations between segments such as
 • Elaboration
 • Cause
 • Explanation
Overview of the Algorithm (1)

• Segment the original text
 • form a token sequence
 • form a block
 • computation of similarity

• Construct lexical chains (WordNet, POS tagger)
 select set of candidate words (noun, POS tagger)
 find appropriate chain by relations between words
 Extra-strong (same word)
 Strong (two words connected by WordNet relations)
 Medium-strong (link between synsets is longer than one)
 If found, insert the word in the chain
Overview of the Algorithm (2)

Identify strong chains

Good predictors of strength of a chain?

Length = number of occurrences of members in a chain

Homogeneity index = 1 – (number of distinct occurrences / length)

Score(Chain) = Length * Homogeneity_Index

Strength Criterion:

Score(Chain) > Average(Scores) +

2* StandardDeviation(Scores)

Extract significant sentences?

This is a challenge...
Overview of the Algorithm (3)

Extract significant sentences?

Heuristic

Select representative words

Extract sentence with first appearance of representative Word.
MEAD Summarization

- Centroid based
- Based on sentence utility
- Vector-based representation/vector based matching
- MEAD Summarization toolkit
Vector-based representation

• The cosine measure

\[
\text{sim}(D, C) = \frac{\sum_k d_k \cdot c_k \cdot \text{idf}(k)}{\sqrt{\sum_k (d_k)^2} \cdot \sqrt{\sum_k (c_k)^2}}
\]
CIDR

\[\text{sim} \geq T \]

\[\text{sim} < T \]
MEAD Summarization

- Input: Cluster of \(d \) documents with \(n \) sentences (compression rate = \(r \))
- Output: \((n*r)\) sentences from the cluster with the highest values of score

\[
SCORE (s) = S_i (w_c C_i + w_p P_i + w_f F_i)
\]
Three default features that come with the MEAD distribution are Centroid, Position and Length.

1. Position
 - the first sentence of a document gets the maximum Position value of 1, and the last sentence gets the value 0.

2. Length
 - Length is not a real feature score, but a cutoff value that ignores sentences shorter than the given threshold.
 - Several rerankers are implemented in MEAD
 - default reranker of the system based on Cross-Sentence Informational Subsumption (CSIS) (Radev, 2000)

3. Centroid
The three default MEDA features

which is a precomputed list of idf’s for English words.

The reranker in the example is a word-based MMR reranker with a cosine similarity threshold, 0.5

Relative weight

the number 9 indicates the threshold for selecting a sentence based on the number of the words in the sentence.

Figure 4: A sample MEAD policy.

feature LexRank LexRank.pl 0.2
Centroid 1 Position 1 LengthCutoff 9 LexRank 1
mmr-reranker-word.pl 0.5 MEAD-cosine enidf
Graph-based Lexical Centrality
Cetrality based sentence salience

- Bag-of-words model → idf cosine similarity → cosine similarity matrix / weighted graph → sentence centrality

- Basic approach: degree centrality

- Threshold variation
Eigenvector centrality (LexRank)

- Uses the concept of *prestige* from social networks
- How many friends? + Who are your friends?
- Noisy cluster with 1 unrelated document
- Each node will distribute the centrality to its neighbors

\[
p(u) = \sum_{v \in \text{adj}[u]} \frac{p(v)}{\text{deg}(v)} \quad p = B^T p \quad B(i, j) = \frac{A(i, j)}{\sum_k A(i, k)}
\]

- B is a stochastic matrix
- P is the eigenvector corresponding to eigenvalue 1
LexRank

- Uses PageRank equation
- d – damping factor for convergence

$$p(u) = \frac{d}{N} + (1 - d) \sum_{v \in \text{adj}[u]} \frac{p(v)}{\text{deg}(v)}$$

Variation: Continuous LexRank

- Use the weighted graph directly (no discretization)
- Normalize the similarity matrix

$$p(u) = \frac{d}{N} + (1 - d) \sum_{v \in \text{adj}[u]} \frac{\text{idf-modified-cosine}(u, v)}{\sum_{z \in \text{adj}[v]} \text{idf-modified-cosine}(z, v)} p(v)$$
Performance

- Centrality is better than Centroid (subsumption, noisy data)

- Baselines for performance measurements:
 - Random sentences
 - Lead-based summarization (positioning)

- Degree centrality, LexRank with threshold, continuous LexRank are all better than baselines.

- Document Understanding Conference (DUC 2004)
Sentence Ordering
Sentence ordering

- Input → Selection → Ordering → Repairs → Summary

- Does it really matter?

- What do we use?
 - chronological ordering of events
 - topical relatedness

- Naïve algorithms:
 - Majority Ordering
 - Chronological Ordering
Majority Ordering

- Identify units of text conveying similar information → Themes

- 1 Theme → 1 sentence

- Binary relation \((\text{Theme}1 < \text{Theme}2)\)

- Relation not transitive!

- Problem is NP-complete...

- ... so we use heuristics
Chronological Ordering

- Also uses **themes**

- Assigns **timestamps** to themes \rightarrow total order

- Explicit timestamps are not always available

- It's hard to assign timestamps to some themes (reactions to events, background information)

- Chronological approach is inherently limited
A better algorithm

- **Majority Ordering** - works if information is ordered consistently

- **Chronological Ordering** - works if information is temporally sequenced

- Idea: *Chronological Ordering + topical relatedness*

- Group themes into cohesion blocks and then apply C. O.
Summary

- Understanding user behavior (eye tracking)
- User activity tracking
- Optimizing Search Engines using Clickthrough Data
- Using Lexical Chains for Text Summarization
- Multidocument Summarization – Centroid-based algorithm
- Graph-based Lexical Centrality
- Sentence Ordering

12/7/11
Questions?