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PID Control

6.1 Introduction

The PID controller is the most common form of feedback. It was an es-
sential element of early governors and it became the standard tool when
process control emerged in the 1940s. In process control today, more than
95% of the control loops are of PID type, most loops are actually PI con-
trol. PID controllers are today found in all areas where control is used.
The controllers come in many different forms. There are stand-alone sys-
tems in boxes for one or a few loops, which are manufactured by the
hundred thousands yearly. PID control is an important ingredient of a
distributed control system. The controllers are also embedded in many
special-purpose control systems. PID control is often combined with logic,
sequential functions, selectors, and simple function blocks to build the
complicated automation systems used for energy production, transporta-
tion, and manufacturing. Many sophisticated control strategies, such as
model predictive control, are also organized hierarchically. PID control is
used at the lowest level; the multivariable controller gives the setpoints
to the controllers at the lower level. The PID controller can thus be said
to be the “bread and butter ’t ’t of control engineering. It is an important
component in every control engineer’s tool box.

PID controllers have survived many changes in technology, from me-
chanics and pneumatics to microprocessors via electronic tubes, transis-
tors, integrated circuits. The microprocessor has had a dramatic influence
on the PID controller. Practically all PID controllers made today are based
on microprocessors. This has given opportunities to provide additional fea-
tures like automatic tuning, gain scheduling, and continuous adaptation.
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6.2 The Algorithm

6.2 The Algorithm

We will start by summarizing the key features of the PID controller. The
“textbook” version of the PID algorithm is described by:

u(t) = K
(

e(t) + 1
Ti

t∫
0

e(τ )dτ + Td
de(t)

dt

)
(6.1)

where y is the measured process variable, r the reference variable, u is
the control signal and e is the control error (e = ysp − y). The reference
variable is often called the set point. The control signal is thus a sum of
three terms: the P-term (which is proportional to the error), the I-term
(which is proportional to the integral of the error), and the D-term (which
is proportional to the derivative of the error). The controller parameters
are proportional gain K , integral time Ti, and derivative time Td. The
integral, proportional and derivative part can be interpreted as control
actions based on the past, the present and the future as is illustrated
in Figure 2.2. The derivative part can also be interpreted as prediction
by linear extrapolation as is illustrated in Figure 2.2. The action of the
different terms can be illustrated by the following figures which show the
response to step changes in the reference value in a typical case.

Effects of Proportional, Integral and Derivative Action

Proportional control is illustrated in Figure 6.1. The controller is given
by (6.1) with Ti = ∞ and Td = 0. The figure shows that there is always
a steady state error in proportional control. The error will decrease with
increasing gain, but the tendency towards oscillation will also increase.

Figure 6.2 illustrates the effects of adding integral. It follows from (6.1)
that the strength of integral action increases with decreasing integral time
Ti. The figure shows that the steady state error disappears when integral
action is used. Compare with the discussion of the “magic of integral
action” in Section Section 2.2. The tendency for oscillation also increases
with decreasing Ti. The properties of derivative action are illustrated in
Figure 6.3.

Figure 6.3 illustrates the effects of adding derivative action. The pa-
rameters K and Ti are chosen so that the closed-loop system is oscillatory.
Damping increases with increasing derivative time, but decreases again
when derivative time becomes too large. Recall that derivative action can
be interpreted as providing prediction by linear extrapolation over the
time Td. Using this interpretation it is easy to understand that derivative
action does not help if the prediction time Td is too large. In Figure 6.3
the period of oscillation is about 6 s for the system without derivative
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Figure 6.1 Simulation of a closed-loop system with proportional control. The pro-
cess transfer function is P(s) = 1/(s+ 1)3.
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Figure 6.2 Simulation of a closed-loop system with proportional and integral con-
trol. The process transfer function is P(s) = 1/(s + 1)3, and the controller gain is
K = 1.

action. Derivative actions ceases to be effective when Td is larger than
a 1 s (one sixth of the period). Also notice that the period of oscillation
increases when derivative time is increased.

A Perspective

There is much more to PID than is revealed by (6.1). A faithful imple-
mentation of the equation will actually not result in a good controller. To
obtain a good PID controller it is also necessary to consider
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Figure 6.3 Simulation of a closed-loop system with proportional, integral and
derivative control. The process transfer function is P(s) = 1/(s+ 1)3, the controller
gain is K = 3, and the integral time is Ti = 2.

• Noise filtering and high frequency roll-off

• Set point weighting and 2 DOF

• Windup

• Tuning

• Computer implementation

In the case of the PID controller these issues emerged organically as the
technology developed but they are actually important in the implemen-
tation of all controllers. Many of these questions are closely related to
fundamental properties of feedback, some of them have been discussed
earlier in the book.

6.3 Filtering and Set Point Weighting

Filtering

Differentiation is always sensitive to noise. This is clearly seen from the
transfer function G(s) = s of a differentiator which goes to infinity for
large s. The following example is also illuminating.
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Chapter 6. PID Control

EXAMPLE 6.1—DIFFERENTIATION AMPLIFIES HIGH FREQUENCY NOISE

Consider the signal

y(t) = sin t+ n(t) = sin t+ an sinω nt

where the noise is sinusoidal noise with frequency ω . The derivative of
the signal is

dy(t)
dt

= cos t+ n(t) = cos t+ anω cosω nt

The signal to noise ratio for the original signal is 1/an but the signal to
noise ratio of the differentiated signal is ω/an. This ratio can be arbitrarily
high if ω is large.

In a practical controller with derivative action it is therefor necessary to
limit the high frequency gain of the derivative term. This can be done by
implementing the derivative term as

D = − sK Td

1+ sTd/N
Y (6.2)

instead of D = sTdY. The approximation given by (6.2) can be interpreted
as the ideal derivative sTd filtered by a first-order system with the time
constant Td/N. The approximation acts as a derivative for low-frequency
signal components. The gain, however, is limited to K N. This means that
high-frequency measurement noise is amplified at most by a factor K N.
Typical values of N are 8 to 20.

Further limitation of the high-frequency gain

The transfer function from measurement y to controller output u of a PID
controller with the approximate derivative is

C(s) = −K
(

1+ 1
sTi

+ sTd

1+ sTd/N

)
This controller has constant gain

lim
s→∞

C(s) = −K (1+ N)

at high frequencies. It follows from the discussion on robustness against
process variations in Section 5.5 that it is highly desirable to roll-off the
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6.3 Filtering and Set Point Weighting

controller gain at high frequencies. This can be achieved by additional
low pass filtering of the control signal by

F(s) = 1
(1+ sTf )n

where Tf is the filter time constant and n is the order of the filter. The
choice of Tf is a compromise between filtering capacity and performance.
The value of Tf can be coupled to the controller time constants in the
same way as for the derivative filter above. If the derivative time is used,
Tf = Td/N is a suitable choice. If the controller is only PI, Tf = Ti/N
may be suitable.

The controller can also be implemented as

C(s) = −K
(

1+ 1
sTi

+ sTd

)
1

(1+ sTd/N)2 (6.3)

This structure has the advantage that we can develop the design meth-
ods for an ideal PID controller and use an iterative design procedure. The
controller is first designed for the process P(s). The design gives the con-
troller parameter Td. An ideal controller for the process P(s)/(1+sTd/N)2
is then designed giving a new value of Td etc. Such a procedure will also
give a clear picture of the trade-off between performance and filtering.

Set Point Weighting

When using the control law given by (6.1) it follows that a step change in
the reference signal will result in an impulse in the control signal. This
is often highly undesirable therefor derivative action is frequently not
applied to the reference signal. This problem can be avoided by filtering
the reference value before feeding it to the controller. Another possibility
is to let proportional action act only on part of the reference signal. This is
called set point weighting. A PID controller given by (6.1) then becomes

u(t) = K
(

br(t) − y(t) + 1
Ti

t∫
0

e(τ )dτ + Td
(
c

dr(t)
dt

− dy(t)
dt

)) (6.4)

where b and c are additional parameter. The integral term must be based
on error feedback to ensure the desired steady state. The controller given
by (6.4) has a structure with two degrees of freedom because the signal
path from y to u is different from that from r to u. The transfer function
from r to u is

U (s)
R(s) = Cr(s) = K

(
b+ 1

sTi
+ csTd

)
(6.5)
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Figure 6.4 Response to a step in the reference for systems with different set point
weights b = 0 dashed, b = 0.5 full and b = 1.0 dash dotted. The process has the
transfer function P(s) = 1/(s+1)3 and the controller parameters are k = 3, ki = 1.5
and kd = 1.5.

and the transfer function from y to u is

U (s)
Y(s) = Cy(s) = K

(
1+ 1

sTi
+ sTd

)
(6.6)

Set point weighting is thus a special case of controllers having two degrees
of freedom.

The system obtained with the controller (6.4) respond to load distur-
bances and measurement noise in the same way as the controller (6.1)
. The response to reference values can be modified by the parameters b
and c. This is illustrated in Figure 6.4, which shows the response of a PID
controller to setpoint changes, load disturbances, and measurement errors
for different values of b. The figure shows clearly the effect of changing b.
The overshoot for setpoint changes is smallest for b = 0, which is the case
where the reference is only introduced in the integral term, and increases
with increasing b.

The parameter c is normally zero to avoid large transients in the con-
trol signal due to sudden changes in the setpoint.

6.4 Different Parameterizations

The PID algorithm given by Equation (6.1) can be represented by the
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6.4 Different Parameterizations

transfer function

G(s) = K
(

1+ 1
sTi

+ sTd

)
(6.7)

A slightly different version is most common in commercial controllers.
This controller is described by

G ′(s) = K ′
(

1+ 1
sT ′

i

)
(1+ sT ′

d) = K ′
(

1+ T ′
d

T ′
i
+ 1

sT ′
i
+ sT ′

d

)
(6.8)

The controller given by Equation (6.7) is called non-interacting, and
the one given by Equation (6.8) interacting. The interacting controller
Equation (6.8) can always be represented as a non-interacting controller
whose coefficients are given by

K = K ′T
′
i + T ′

d

T ′
i

Ti = T ′
i + T ′

d

Td =
T ′

i T ′
d

T ′
i + T ′

d

(6.9)

An interacting controller of the form Equation (6.8) that corresponds to
a non-interacting controller can be found only if

Ti ≥ 4Td

The parameters are then given by

K ′ = K
2

(
1+

√
1− 4Td/Ti

)
T ′

i =
Ti

2

(
1+

√
1− 4Td/Ti

)
T ′

d =
Ti

2

(
1−

√
1− 4Td/Ti

) (6.10)

The non-interacting controller given by Equation (6.7) is more general,
and we will use that in the future. It is, however, sometimes claimed that
the interacting controller is easier to tune manually.

It is important to keep in mind that different controllers may have
different structures when working with PID controllers. If a controller is
replaced by another type of controller, the controller parameters may have
to be changed. The interacting and the non-interacting forms differ only
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Chapter 6. PID Control

when both the I and the D parts of the controller are used. If we only use
the controller as a P, PI, or PD controller, the two forms are equivalent.
Yet another representation of the PID algorithm is given by

G ′′(s) = k+ ki

s
+ skd (6.11)

The parameters are related to the parameters of standard form through

k = K ki = K
Ti

kd = K Td

The representation Equation (6.11) is equivalent to the standard form, but
the parameter values are quite different. This may cause great difficulties
for anyone who is not aware of the differences, particularly if parameter
1/ki is called integral time and kd derivative time. It is even more con-
fusing if ki is called integration time. The form given by Equation (6.11)
is often useful in analytical calculations because the parameters appear
linearly. The representation also has the advantage that it is possible to
obtain pure proportional, integral, or derivative action by finite values of
the parameters.

The PIPD Controller

The controller with set point weighting can also be represented by the
block diagram in Figure 6.5. To see this we introduce the transfer func-
tions of the blocks

GPI(s) = k′ + k′i
s

GPD(s) = 1+ k′ds

Notice that the proportional gain of the PD controller must be one in order
to have zero steady state error. The input-output relation of the complete
controller is

U (s) = k′R(s) + k′i
s
(R(s) − Y(s)) − (k′ + k′dh′i)Y(s) − k′k′dsY(s)

Which shows that the controller is thus identical to the controller given
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Figure 6.5 Block diagram of a PI-PD controller. This controller is equivalent to a
conventional PID controller with set point weighting.

by (6.4). The parameters are related in the following way

k = k′ + k′dk′i
ki = k′i
kd = k′k′d

Ti = k′ + k′dk′i
k′i

= k′

k′i

Td =
k′k′d
k′i

b = k′

k′ + k′dh′i
c = 0

Following the same pattern the controller with b = 0 and c = 0 is some-
times called an I-PD controller, and the controller with b = 1 and c = 0
is called a PI-D controller.

Notice, however, that the representation given by (6.4) is much better
suitable for tuning, because the parameters k, Ti and Td can first be de-
termined to deal with load disturbances, measurement noise and process
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uncertainty. When this is done the response to set points can be adjusted
by choosing the parameters b and c. The controller parameters appear in
a much more complicated way in the PIPD controller.

6.5 Windup

Although many aspects of a control system can be understood based on
linear theory, some nonlinear effects must be accounted for in practically
all controllers. Windup is such a phenomena, which is caused by the inter-
action of integral action and saturations. All actuators have limitations:
a motor has limited speed, a valve cannot be more than fully opened or
fully closed, etc. For a control system with a wide range of operating condi-
tions, it may happen that the control variable reaches the actuator limits.
When this happens the feedback loop is broken and the system runs as
an open loop because the actuator will remain at its limit independently
of the process output. If a controller with integrating action is used, the
error will continue to be integrated. This means that the integral term
may become very large or, colloquially, it “winds up”. It is then required
that the error has opposite sign for a long period before things return to
normal. The consequence is that any controller with integral action may
give large transients when the actuator saturates. We will illustrate this
by an example.

EXAMPLE 6.2—ILLUSTRATION OF INTEGRATOR WINDUP

The wind-up phenomenon is illustrated in Figure 6.6, which shows control
of an integrating process with a PI controller. The initial setpoint change
is so large that the actuator saturates at the high limit. The integral
term increases initially because the error is positive; it reaches its largest
value at time t = 10 when the error goes through zero. The output remains
saturated at this point because of the large value of the integral term. It
does not leave the saturation limit until the error has been negative for a
sufficiently long time to let the integral part come down to a small level.
Notice that the control signal bounces between its limits several times.
The net effect is a large overshoot and a damped oscillation where the
control signal flips from one extreme to the other as in relay oscillation.
The output finally comes so close to the setpoint that the actuator does
not saturate. The system then behaves linearly and settles.

The example show integrator windup which is generated by a change in
the reference value. Windup may also be caused by large disturbances or
equipment malfunctions. It can also occur in many other situations.

The phenomenon of windup was well known to manufacturers of ana-
log controllers who invented several tricks to avoid it. They were described
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Figure 6.6 Illustration of integrator windup. The diagrams show process output
y, setpoint ysp, control signal u, and integral part I.

under labels like preloading, batch unit, etc. Although the problem was
well understood, there were often restrictions caused by the analog tech-
nology. The ideas were often kept as trade secrets and not much spoken
about. The problem of windup was rediscovered when controllers were im-
plemented digitally and several methods to avoid windup were presented
in the literature. In the following section we describe some of the methods
used to avoid windup.

Setpoint Limitation

One attempt to avoid integrator windup is to introduce limiters on the
setpoint variations so that the controller output never reaches the actua-
tor limits. This frequently leads to conservative bounds and poor perfor-
mance. Furthermore, it does not avoid windup caused by disturbances.

Incremental Algorithms

In the early phases of feedback control, integral action was integrated
with the actuator by having a motor drive the valve directly. In this

case windup is handled automatically because integration stops when the
valve stops. When controllers were implemented by analog techniques,
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Figure 6.7 Controller with anti-windup where the actuator output is estimated
from a mathematical model.

and later with computers, many manufacturers used a configuration that
was an analog of the old mechanical design. This led to the so-called
velocity algorithms. A velocity algorithm first computes the rate of change
of the control signal which is then fed to an integrator. In some cases
this integrator is a motor directly connected to the actuator. In other
cases the integrator is implemented internally in the controller. With this
approach it is easy to avoid windup by inhibiting integration whenever
the output saturates. This method is equivalent to back-calculation, which
is described below. If the actuator output is not measured, a model that
computes the saturated output can be used. It is also easy to limit the
rate of change of the control signal.

Back-Calculation and Tracking

Back-calculation works as follows: When the output saturates, the inte-
gral term in the controller is recomputed so that its new value gives an
output at the saturation limit. It is advantageous not to reset the inte-
grator instantaneously but dynamically with a time constant Tt.

Figure 6.7 shows a block diagram of a PID controller with anti-windup
based on back-calculation. The system has an extra feedback path that is
generated by measuring the actual actuator output and forming an error
signal (es) as the difference between the output of the controller (v) and
the actuator output (u). Signal es is fed to the input of the integrator
through gain 1/Tt. The signal is zero when there is no saturation. Thus,
it will not have any effect on the normal operation when the actuator does
not saturate. When the actuator saturates, the signal es is different from
zero. The normal feedback path around the process is broken because the
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Figure 6.8 Controller with anti-windup applied to the system of Figure 6.6. The
diagrams show process output y, setpoint ysp, control signal u, and integral part I.

process input remains constant. There is, however, a feedback path around
the integrator. Because of this, the integrator output is driven towards a
value such that the integrator input becomes zero. The integrator input
is

1
Tt

es + K
Ti

e

where e is the control error. Hence,

es = −K Tt

Ti
e

in steady state. Since es = u− v, it follows that

v = ulim + K Tt

Ti
e

where ulim is the saturating value of the control variable. This means that
the signal v settles on a value slightly out side the saturation limit and the
control signal can react as soon as the error changes time. This prevents
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Figure 6.9 The step response of the system in Figure 6.6 for different values of
the tracking time constant Tt. The upper curve shows process output y and setpoint
ysp, and the lower curve shows control signal u.

the integrator from winding up. The rate at which the controller output is
reset is governed by the feedback gain, 1/Tt, where Tt can be interpreted
as the time constant, which determines how quickly the integral is reset.
We call this the tracking time constant.

It frequently happens that the actuator output cannot be measured.
The anti-windup scheme just described can be used by incorporating a
mathematical model of the saturating actuator, as is illustrated in Fig-
ure 6.7.

Figure 6.8 shows what happens when a controller with anti-windup is
applied to the system simulated in Figure 6.6. Notice that the output of
the integrator is quickly reset to a value such that the controller output
is at the saturation limit, and the integral has a negative value during
the initial phase when the actuator is saturated. This behavior is drasti-
cally different from that in Figure 6.6, where the integral has a positive
value during the initial transient. Also notice the drastic improvement in
performance compared to the ordinary PI controller used in Figure 6.6.

The effect of changing the values of the tracking time constant is il-
lustrated in Figure 6.9. From this figure, it may thus seem advantageous
to always choose a very small value of the time constant because the
integrator is then reset quickly. However, some care must be exercised
when introducing anti-windup in systems with derivative action. If the
time constant is chosen too small, spurious errors can cause saturation
of the output, which accidentally resets the integrator. The tracking time
constant Tt should be larger than Td and smaller than Ti. A rule of thumb
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Figure 6.10 Block diagram and simplified representation of PID module with
tracking signal.

that has been suggested is to choose Tt =
√

TiTd.

Controllers with a Tracking Mode

A controller with back-calculation can be interpreted as having two modes:
the normal control mode, when it operates like an ordinary controller, and
a tracking mode, when the controller is tracking so that it matches given
inputs and outputs. Since a controller with tracking can operate in two
modes, we may expect that it is necessary to have a logical signal for
mode switching. However, this is not necessary, because tracking is auto-
matically inhibited when the tracking signal w is equal to the controller
output. This can be used with great advantage when building up complex
systems with selectors and cascade control.

Figure 6.10 shows a PID module with a tracking signal. The module
has three inputs: the setpoint, the measured output, and a tracking signal.
The new input TR is called a tracking signal because the controller output
will follow this signal. Notice that tracking is inhibited when w= v. Using
the module the system shown in Figure 6.7 can be presented as shown in
Figure 6.11.
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Figure 6.11 Representation of the controllers with anti-windup in Figure 6.7 us-
ing the basic control module with tracking shown in Figure 6.10.

6.6 Tuning

All general methods for control design can be applied to PID control. A
number of special methods that are tailor-made for PID control have also
been developed, these methods are often called tuning methods. Irrespec-
tive of the method used it is essential to always consider the key elements
of control, load disturbances, sensor noise, process uncertainty and refer-
ence signals.

The most well known tuning methods are those developed by Ziegler
and Nichols. They have had a major influence on the practice of PID
control for more than half a century. The methods are based on character-
ization of process dynamics by a few parameters and simple equations for
the controller parameters. It is surprising that the methods are so widely
referenced because they give moderately good tuning only in restricted
situations. Plausible explanations may be the simplicity of the methods
and the fact that they can be used for simple student exercises in basic
control courses.

The Step Response Method

One tuning method presented by Ziegler and Nichols is based on a process
information in the form of the open-loop step response obtained from a
bump test. This method can be viewed as a traditional method based on
modeling and control where a very simple process model is used. The step
response is characterized by only two parameters a and L, as shown in
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Figure 6.12 Characterization of a step response in the Ziegler-Nichols step re-
sponse method.

Table 6.1 PID controller parameters obtained for the Ziegler-Nichols step response
method.

Controller K Ti Td Tp

P 1/a 4L

PI 0.9/a 3L 5.7L

PID 1.2/a 2L L/2 3.4L

Figure 6.12.
The point where the slope of the step response has its maximum is

first determined, and the tangent at this point is drawn. The intersections
between the tangent and the coordinate axes give the parameters a and L.
The controller parameters are then obtained from Table 6.1. An estimate
of the period Tp of the closed-loop system is also given in the table.

The Frequency Response Method

A second method developed by Ziegler and Nichols is based on a simple
characterization of the the frequency response of the process process dy-
namics. The design is based on knowledge of only one point on the Nyquist
curve of the process transfer function P(s), namely the point where the
Nyquist curve intersects the negative real axis. This point can be char-
acterized by two parameters the frequency ω 180 and the gain at that fre-
quency k180 = hP(iω 180)h. For historical reasons the point has been called
the ultimate point and characterized by the parameters Ku = 1/K180 and
Tu = 2π/ω 180, which are called the ultimate gain and the ultimate pe-
riod. These parameters can be determined in the following way. Connect
a controller to the process, set the parameters so that control action is
proportional, i.e., Ti = ∞ and Td = 0. Increase the gain slowly until the
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Figure 6.13 Characterization of a step response in the Ziegler-Nichols step re-
sponse method.

Table 6.2 Controller parameters for the Ziegler-Nichols frequency response
method.

Controller K Ti Td Tp

P 0.5Ku Tu

PI 0.4Ku 0.8Tu 1.4Tu

PID 0.6Ku 0.5Tu 0.125Tu 0.85Tu

process starts to oscillate. The gain when this occurs is Ku and the period
of the oscillation is Tu. The parameters of the controller are then given by
Table 6.2. An estimate of the period Tp of the dominant dynamics of the
closed-loop system is also given in the table.

The frequency response method can be viewed as an empirical tuning
procedure where the controller parameters are obtained by direct experi-
ments on the process combined with some simple rules. For a proportional
controller the rule is simply to increase the gain until the process oscil-
lates and then reduce it by 50%.

Assessment of the Ziegler Nichols Methods

The Ziegler-Nichols tuning rules were developed to give closed loop sys-
tems with good attenuation of load disturbances. The methods were based
on extensive simulations. The design criterion was quarter amplitude de-
cay ratio, which means that the amplitude of an oscillation should be
reduced by a factor of four over a whole period. This corresponds to closed
loop poles with a relative damping of about ζ = 0.2, which is too small.
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Controllers designed by the Ziegler-Nichols rules thus inherently give
closed loop systems with poor robustness. It also turns out that it is not
sufficient to characterize process dynamics by two parameters only. The
methods developed by Ziegler and Nichols have been been very popular in
spite of these drawbacks. Practically all manufacturers of controller have
used the rules with some modifications in recommendations for controller
tuning. One reason for the popularity of the rules is that they are simple
and easy to explain. The tuning rules give ball park figures. Final tuning
is then done by trial and error. Another (bad) reason is that the rules
lend themselves very well to simple exercises for control education.

With the insight into controller design that has developed over the
years it is possible to develop improved tuning rules that are almost as
simple as the Zigler-Nichols rules. These rules are developed by starting
with a solid design method that gives robust controllers with effective
disturbance attenuation. We illustrate with some rules where the process
is characterized by three parameters.

An Improved Step Response Method

This method characterizes the unit step response by three parameters
K , L and T for stable processes and Kv = K/T and L for integrating
processes. This parameterization matches the transfer functions

P1(s) = kp

1+ sT
e−sL

P2(s) = kv

s
e−sL

The transfer function P1(s), which is called a first order system with time
delay or a K LT model. Parameter L is determined from the intercept
of the tangent with largest slope with the time axis as was described in
Figure 6.12. Parameter T is also determined as shown in the figure as
the difference between the time when the step response reaches 63% of
its steady state value. Parameter kp is the static gain of the system. The
parameter kv is the largest slope of the unit step response. Parameter
L is called the apparent time delay and parameter T the apparent time
constant or the apparent lag. The adverb apparent is added to indicate
that parameters are based on approximations. The parameter

τ = L
L+ T

is called the relative time delay. This parameter is a good indicator of
process dynamics.

235



Chapter 6. PID Control

To obtain improved tuning rules we use a design method that maxi-
mizes integral gain subject to the robustness constraint that the maximum
sensitivity is less than Ms = 1.4. The procedure has been applied to a a
large test batch representing many different processes. One tuning rule
is

K =


0.3

T
Kv L

for+ L < 2T

0.15Kp for 2T < L

Ti =


8L for L < 0.1T

0.8T for 0.1T < L < 2T

0.4L for 2T < L

(6.12)

The properties of the improved tuning rules are illustrated by applying
them to systems with the transfer functions

P1(s) = 1
(s+ 1)(0.2s+ 1)

P2(s) = 1
(s+ 1)4

P3(s) = 1
0.05s+ 1)2 e−1.2s

The process P1(s) has lag dominated dynamics, process P3(s) has delay
dominated dynamics and process P2(s) has balanced dynamics.

Figure 6.14 shows the response to a step change in the reference at
time zero and a step change in a load disturbance at the process input
for PI control of the process P1(s). The dashed lines show the responses
obtained by the Ziegler-Nichols step response method and the full line
shows the response obtained with the improved rule which restricted the
maximum sensitivity to 1.4. The oscillatory responses to obtained by the
Ziegler-Nichols method are clearly visible in the figure which reflects the
design choice of quarter amplitude damping. The response to load distur-
bances obtained by the Ziegler-Nichols method comes at a price of poor
sensitivity. There is also a very large overshoot in the response to refer-
ence values. Figure 6.15 shows the corresponding responses for the system
P4(s). The oscillatory character obtained with Ziegler Nichols tuning is
clearly visible. Figure 6.16 shows the response for a process that is delay
dominated. The figure shows that Ziegler-Nichols tuning performs very
poorly for this process. Overall we find that the improved tuning rules
work for a wide range of processes and that they give robust systems
with good responses.
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Figure 6.14 Behavior of closed loop systems with PI controllers designed by the
Ziegler-Nichols rule (dashed) and the improved tuning rules (solid). The process
has lag dominated dynamics with the transfer function P(s) = 1

(s+1)(0.2s+1) .

6.7 Computer Implementation

Most controllers are nowadays implemented in computers. In this section
we will discuss many practical issues related to computer implementation.

Sampling

When the controller is implemented in a computer, the analog inputs are
read and the outputs are set with a certain sampling period. This is a
drawback compared to the analog implementations, since the sampling
introduces dead-time in the control loop.

When a digital computer is used to implement a control law, the ideal
sequence of operation is the following.

1. Wait for clock interrupt

2. Read analog input

3. Compute control signal

4. Set analog output
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Figure 6.15 Behavior of closed loop systems with PI controllers designed by the
Ziegler-Nichols rule (dashed) and the improved tuning rules (solid). The process
has balanced dynamics with the transfer function P(s) = 1

(s+1)4 .

5. Update controller variables

6. Go to 1

With this implementation, the delay is minimized. If the analog input is
read with a sampling period h, the average delay of the measurement sig-
nal is h/2. The computation time is often short compared to the sampling
period. This means that the total delay is about h/2. However, most con-
trollers and instrument systems do not organize the calculation in this
way. Therefore, the delays introduced because of the sampling is often
several sampling periods.

Aliasing

The sampling mechanism introduces some unexpected phenomena, which
must be taken into account in a good digital implementation of a PID
controller. To explain these, consider the signals

s(t) = cos(nω st±ω t)
and

sa(t) = cos(ω t)
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Figure 6.16 Behavior of closed loop systems with PI controllers designed by the
Ziegler-Nichols rule (dashed) and the improved tuning rules (solid). The process
has delay dominated dynamics with the transfer function P(s) = 1

0.05s+1)2 e−1.2s.

where ω s = 2π/h [rad/s] is the sampling frequency. Well-known formulas
for the cosine function imply that the values of the signals at the sampling
instants [kh, k = 0, 1, 2, ...] have the property

s(kh) = cos(nkhω s ±ω kh) = cos(ω kh) = sa(ω kh)

The signals s and sa thus have the same values at the sampling instants.
This means that there is no way to separate the signals if only their
values at the sampling instants are known. Signal sa is, therefore, called
an alias of signal s. This is illustrated in Figure 6.17. A consequence of the
aliasing effect is that a high-frequency disturbance after sampling may
appear as a low-frequency signal. In Figure 6.17 the sampling period is
1 s and the sinusoidal disturbance has a period of 6/5 s. After sampling,
the disturbance appear as a sinusoid with the frequency

fa = 1− 5
6
= 1/6 Hz

This low-frequency signal with time period 6 s is seen in the figure.
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Figure 6.17 Illustration of the aliasing effect. The diagram shows signal s and its
alias sa.

Prefiltering

The aliasing effect can create significant difficulties if proper precautions
are not taken. High frequencies, which in analog controllers normally
are effectively eliminated by low-pass filtering, may, because of aliasing,
appear as low-frequency signals in the bandwidth of the sampled control
system. To avoid these difficulties, an analog prefilter (which effectively
eliminates all signal components with frequencies above half the sampling
frequency) should be introduced. Such a filter is called an anti-aliasing
filter. A second-order Butterworth filter is a common anti-aliasing filter.
Higher-order filters are also used in critical applications. The selection of
the filter bandwidth is illustrated by the following example.

EXAMPLE 6.3—SELECTION OF PREFILTER BANDWIDTH

Assume it is desired that the prefilter attenuate signals by a factor of
16 at half the sampling frequency. If the filter bandwidth is ω b and the
sampling frequency is ω s, we get

(ω s/2ω b)2 = 16

Hence,

ω b = 1
8

ω s

Notice that the dynamics of the prefilter is often significant. It should
be accounted for in the control design by combining it with the process
dynamics.
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Discretization

To implement a continuous-time control law, such as a PID controller in
a digital computer, it is necessary to approximate the derivatives and the
integral that appear in the control law. A few different ways to do this
are presented below.

Proportional Action The proportional term is

P = K (bysp − y)
This term is implemented simply by replacing the continuous variables
with their sampled versions. Hence,

P(tk) = K (bysp(tk) − y(tk)) (6.13)
where {tk} denotes the sampling instants, i.e., the times when the com-
puter reads the analog input.

Integral Action The integral term is given by

I(t) = K
Ti

t∫
0

e(s)ds

It follows that
dI
dt
= K

Ti
e (6.14)

The derivative is approximated by a forward difference gives

I(tk+1) − I(tk)
h

= K
Ti

e(tk)

This leads to the following recursive equation for the integral term

I(tk+1) = I(tk) + K h
Ti

e(tk) (6.15)

Derivative Action The derivative term is given by Equation (6.2), i.e.

Td

N
dD
dt

+ D = −K Td
dy
dt

(6.16)

This equation can be approximated in the same way as the integral
term. In this case we approximate the derivatives by a backward differ-
ence.

Td

N
D(tk) − D(tk−1)

h
+ D(tk) = −K Td

y(tk) − y(tk−1)
h
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This can be rewritten as

D(tk) = Td

Td + Nh
D(tk−1) − K Td N

Td + Nh
(y(tk) − y(tk−1)) (6.17)

The advantage by using a backward difference is that the parameter
Td/(Td + Nh) is in the range of 0 to 1 for all values of the parameters.
This guarantees that the difference equation is stable.

Summarizing we find that the PID controller can be approximated by

p(tk) = k ∗ (br(tk) − y(tk))
e(tk) = r(tk) − y(tk)

d(tk) = Td

Td + Nh

(
d(tk−1) − kN

(
y(tk) − y(tk−1)

))
u(tk) = p(tk) + i(tk) + d(tk)

i(tk+1) = i(tk) + kh
Ti

e(tk)

Velocity Algorithms

The algorithms described so far are called positional algorithms because
the output of the algorithms is the control variable. In certain cases the
control system is arranged in such a way that the control signal is driven
directly by an integrator, e.g., a motor. It is then natural to arrange the
algorithm in such a way that it gives the velocity of the control variable.
The control variable is then obtained by integrating its velocity. An al-
gorithm of this type is called a velocity algorithm. A block diagram of a
velocity algorithm for a PID controller is shown in Figure 6.18.

Velocity algorithms were commonly used in many early controllers
that were built around motors. In several cases, the structure was re-
tained by the manufacturers when technology was changed in order to
maintain functional compatibility with older equipment. Another reason
is that many practical issues, like wind-up protection and bumpless pa-
rameter changes, are easy to implement using the velocity algorithm. This
is discussed further in Sections 6.5 and 6.7. In digital implementations
velocity algorithms are also called incremental algorithms.

Incremental algorithm

The incremental form of the PID algorithm is obtained by computing the
time differences of the controller output and adding the increments.

∆u(tk) = u(tk) − u(tk−1) = ∆P(tk) + ∆ I(tk) + ∆ D(tk)
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Figure 6.18 Block diagram of a PID algorithm in velocity form.

In some cases integration is performed externally. This is natural when a
stepper motor is used. The output of the controller should then represent
the increments of the control signal, and the motor implements the inte-
grator. The increments of the proportional part, the integral part, and the
derivative part are easily calculated from Equations 6.13, 6.15 and 6.17:

∆P(tk) = P(tk) − P(tk−1) = K (bysp(tk) − y(tk) − bysp(tk−1) + y(tk−1))
∆ I(tk) = I(tk) − I(tk−1) = bi1 e(tk) + bi2 e(tk−1)

∆ D(tk) = D(tk) − D(tk−1) = ad∆ D(tk−1) − bd (y(tk) − 2y(tk−1) + y(tk−2))

One advantage with the incremental algorithm is that most of the com-
putations are done using increments only. Short word-length calculations
can often be used. It is only in the final stage where the increments are
added that precision is needed.

Velocity algorithms for controllers without integral action

A velocity algorithm cannot be used directly for a controller without in-
tegral action, because such a controller cannot keep the stationary value.
This can be understood from the block diagram in Figure 6.19A, which
shows a proportional controller in velocity form. Stationarity can be ob-
tained for any value of the control error e, since the output from the
derivation block is zero for any constant input. The problem can be avoided
with the modification shown in Figure 6.19B. Here, stationarity is only
obtained when u = K e+ ub.

If a sampled PID controller is used, a simple version of the method
illustrated in figure 6.19B is obtained by implementing the P controller
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Figure 6.19 Illustrates the difficulty with a proportional controller in velocity
form (A) and a way to avoid it (B).

as
∆u(t) = u(t) − u(t− h) = K e(t) + ub − u(t− h)

where h is the sampling period.

Feedforward control

In feedforward control, the control signal is composed of two terms,

u = uFB + uFF

Here uFB is the feedback component and uFF is the feedforward compo-
nent, either from a measurable disturbance or from the setpoint.

To avoid integrator windup, it is important that the anti-windup mech-
anism acts on the final control signal u, and not only on the feedback
component uFB .

Unfortunately, many of the block-oriented instrument systems avail-
able today have the anti-windup mechanisms inside the feedback con-
troller blocks, without any possibility to add feedforward signals to these
blocks. Hence, the feedforward signals must be added after the controller
blocks. This may lead to windup. Because of this, several tricks, like feed-
ing the feedforward signal through high-pass filters, are used to reduces
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the windup problem. These strategies do, however, lead to a less effective
feedforward.

Incremental algorithms are efficient for feedforward implementation.
By first adding the increments of the feedback and feedforward compo-
nents,

∆u = ∆uFB + ∆uFF

and then forming the control signal as

u(t) = u(t− h) + ∆u(t)
windup is avoided. This requires that the feedback control blocks have
inputs for feedforward signals.

Operational Aspects

Practically all controllers can be run in two modes: manual or automatic.
In manual mode the controller output is manipulated directly by the

operator, typically by pushing buttons that increase or decrease the con-
troller output. A controller may also operate in combination with other
controllers, such as in a cascade or ratio connection, or with nonlinear
elements, such as multipliers and selectors. This gives rise to more oper-
ational modes. The controllers also have parameters that can be adjusted
in operation. When there are changes of modes and parameters, it is es-
sential to avoid switching transients. The way the mode switchings and
the parameter changes are made depends on the structure chosen for the
controller.

Bumpless Transfer Between Manual and Automatic

Since the controller is a dynamic system, it is necessary to make sure that
the state of the system is correct when switching the controller between
manual and automatic mode. When the system is in manual mode, the
control algorithm produces a control signal that may be different from
the manually generated control signal. It is necessary to make sure that
the two outputs coincide at the time of switching. This is called bumpless
transfer.

Bumpless transfer is easy to obtain for a controller in incremental
form. This is shown in Figure 6.20. The integrator is provided with a
switch so that the signals are either chosen from the manual or the au-
tomatic increments. Since the switching only influences the increments
there will not be any large transients.

A similar mechanism can be used in the series, or interacting, imple-
mentation of a PID controller shown in Figure 6.22. In this case there
will be a switching transient if the output of the PD part is not zero at
the switching instant.
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Figure 6.20 Bumpless transfer in a controller with incremental output. MCU
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Figure 6.21 Bumpless transfer in a PID controller with a special series imple-
mentation.
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Figure 6.22 A PID controller where one integrator is used both to obtain integral
action in automatic mode and to sum the incremental commands in manual mode.
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Figure 6.23 PID controller with parallel implementation that switches smoothly
between manual and automatic control.

For controllers with parallel implementation, the integrator of the PID
controller can be used to add up the changes in manual mode. The con-
troller shown in Figure 6.22 is such a system. This system gives a smooth
transition between manual and automatic mode provided that the switch
is made when the output of the PD block is zero. If this is not the case,
there will be a switching transient.

It is also possible to use a separate integrator to add the incremental
changes from the manual control device. To avoid switching transients
in such a system, it is necessary to make sure that the integrator in the
PID controller is reset to a proper value when the controller is in manual
mode. Similarly, the integrator associated with manual control must be
reset to a proper value when the controller is in automatic mode. This can
be realized with the circuit shown in Figure 6.23. With this system the
switch between manual and automatic is smooth even if the control error
or its derivative is different from zero at the switching instant. When
the controller operates in manual mode, as is shown in Figure 6.23, the
feedback from the output v of the PID controller tracks the output u. With
efficient tracking the signal v will thus be close to u at all times. There
is a similar tracking mechanism that ensures that the integrator in the
manual control circuit tracks the controller output.
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Bumpless Parameter Changes

A controller is a dynamical system. A change of the parameters of a dy-
namical system will naturally result in changes of its output. Changes in
the output can be avoided, in some cases, by a simultaneous change of
the state of the system. The changes in the output will also depend on the
chosen realization. With a PID controller it is natural to require that there
be no drastic changes in the output if the parameters are changed when
the error is zero. This will hold for all incremental algorithms because
the output of an incremental algorithm is zero when the input is zero,
irrespective of the parameter values. For a position algorithm it depends,
however, on the implementation.

Assume that the state is chosen as

xI =
t∫

e(τ )dτ

when implementing the algorithm. The integral term is then

I = K
Ti

xI

Any change of K or Ti will then result in a change of I. To avoid bumps
when the parameters are changed, it is essential that the state be chosen
as

xI =
t∫

K (τ )
Ti(τ ) e(τ )dτ

when implementing the integral term.
With sensible precautions, it is easy to ensure bumpless parameter

changes if parameters are changed when the error is zero. There is, how-
ever, one case where special precautions have to be taken, namely, if set-
point weighting is used. To have bumpless parameter changes in such
a case it is necessary that the quantity P + I is invariant to parame-
ter changes. This means that when parameters are changed, the state I
should be changed as follows

Inew = Iold + Kold(bold ysp − y) − Knew(bnew ysp − y)

To build automation systems it is useful to have suitable modules. Fig-
ure 6.24 shows the block diagram for a manual control module. It has two
inputs, a tracking input and an input for the manual control commands.
The system has two parameters, the time constant Tm for the manual
control input and the reset time constant Tt. In digital implementations
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Figure 6.24 Manual control module.

it is convenient to add a feature so that the command signal accelerates
as long as one of the increase-decrease buttons are pushed. Using the
module for PID control and the manual control module in Figure 6.24, it
is straightforward to construct a complete controller. Figure 6.25 shows a
PID controller with internal or external setpoints via increase/decrease
buttons and manual automatic mode. Notice that the system only has two
switches.

Computer Code

As an illustration, the following is a computer code for a PID algorithm.
The controller handles both anti-windup and bumpless transfer.

"Compute controller coefficients
bi=K*h/Ti "integral gain
ad=(2*Td-N*h)/(2*Td+N*h)
bd=2*K*N*Td/(2*Td+N*h) "derivative gain
a0=h/Tt

"Bumpless parameter changes
I=I+Kold*(bold*ysp-y)-Knew*(bnew*ysp-y)

"Control algorithm
r=adin(ch1) "read setpoint from ch1
y=adin(ch2) "read process variable from ch2
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Figure 6.25 A reasonable complete PID controller with anti-windup, automatic-
manual mode, and manual and external setpoint.

P=K*(b*ysp-y) "compute proportional part
D=ad*D-bd*(y-yold) "update derivative part
v=P+I+D "compute temporary output
u=sat(v,ulow,uhigh) "simulate actuator saturation
daout(ch1) "set analog output ch1
I=I+bi*(ysp-y)+ao*(u-v) "update integral
yold=y "update old process output

The computation of the coefficients should be done only when the con-
troller parameters are changed. Precomputation of the coefficients ad, ao,
bd, and bi saves computer time in the main loop. The main program must
be called once every sampling period. The program has three states: yold,
I, and D. One state variable can be eliminated at the cost of a less readable
code. Notice that the code includes derivation of the process output only,
proportional action on part of the error only (b �= 1), and anti-windup.

6.8 Summary

In this Section we have given a detailed treatment of the PID controller,
which is the most common way controller. A number of practical issues
have been discussed. Simple controllers like the PI and PID controller
are naturally not suitable for all processes. The PID controller is suit-
able for processes with almost monotone step responses provided that the
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requirements are not too stringent. The quantity

m =
∫ t

0 n(t)dt∫ t
0 hn(t)hdt

where n(t) is the impulse response can be used as a measure of monotonic-
ity. PID control is not suitable for processes that are highly oscillatory or
when the requirements are extreme.

The PI controller has no phase advance. This means that the PI con-
troller will not work for systems which have phase lag of 180○ or more.
The double integrator is a typical example. Controller with derivative ac-
tion can provide phase advance up to about 50○. Simple processes can
be characterized by the relative time delay τ introduced in the Ziegler-
Nichols tuning procedure. PI control is often satisfactory for processes that
are lag dominated, i.e. when τ close to one. Derivative action is typically
beneficial for processes with small relative delay τ .
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