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Introduction
The conventional handwritten signature on a document is 
used to certify that the signer is responsible for the 
content of the document. The signature is physically a 
part of the document and while forgery is certainly 
possible, it is difficult to do so convincingly. Trying to 
mimic a handwritten signature in a digital medium leads 
to a difficulty since cut and paste operations can be used 
to create a perfect forgery. Thus, we need to have a way 
of signing messages digitally which is functionally 
equivalent to a physical signature, but which is at least as 
resistant to forgery as its physical counterpart.



Introduction
Schemes which provide this functionality are called Digital 
Signature Schemes. A Digital Signature Scheme will have two 
components, a private signing algorithm which permits a user to 
securely sign a message and a public verification algorithm which 
permits anyone to verify that the signature is authentic. The signing 
algorithm needs to "bind" a signature to a message in such a way 
that the signature can not be pulled out and used to sign another 
document, or have the original message modified and the signature 
remain valid. For practical reasons it would be necessary for both 
algorithms to be relatively fast and if small computers such as 
smart cards are to be used, the algorithms can not be too 
computationally complex.
There are many Digital Signature Schemes which meet these 
conditions, but we shall only investigate a few of the most popular 
ones. 



RSA Signatures
As we have previously noted, in order for Bob to sign a message m, 
he raises m to his private decryption exponent mod n. This is the 
signature algorithm. Anyone can verify this signature by raising md 
to Bob's public encryption exponent mod n. This is the verification 
algorithm. Application of the verification algorithm to a valid 
signature yields the message m. The verifier must know the message 
m in order to be sure that this is the message that Bob signed, so in 
this application Bob must send the ordered pair (m, md mod n). 
Some care must be taken in the construction of the message to be 
signed in this way. For instance, if m is the instruction to Bob's bank 
to issue a check to Alice, then if Alice intercepts the ordered pair, 
she can send the same pair to Bob's bank whenever she is a little low 
on cash. To prevent this kind of abuse, when it matters, messages 
should include dates and other such items which prevent the 
message from being reused.



RSA Scheme
Forgeries of Bob's signature are easy to construct. The 
requirement for a valid signature is that raising the second 
coordinate to Bob's public encryption exponent e gives the 
first coordinate. Frank the "forger" can take any number y, 
calculate x = ye mod n and send the pair (x,y). This will be 
verified as Bob signing the message x. Frank's problem is 
that he has no control over the "message" x, which will 
normally be just random nonsense. Without breaking the 
RSA cryptosytem, Frank has only a negligible chance of 
finding a meaningful message, let alone a desired message.



El-Gamal Signature Scheme
Unlike the RSA Signature scheme, which can be used as 
both a cryptosystem and a signature scheme, this signature 
scheme is designed specifically for signatures and is based 
on the discrete logarithm problem. As with the El-Gamal 
cryptosystem, computations are carried out in Zp, where p 
is a prime such that the discrete log problem is intractable 
in Zp. A generator α of Zp* is fixed, and each user selects a 
secret exponent a, and publishes the value β = αa mod p. If 
Alice wishes to sign a message m, she will first select a 
random secret integer k with gcd(k,p-1) = 1. She then 
computes r = αk mod p and then computes s = k-1(m -ar) 
mod (p-1). The signature is the triple (m,r,s).



El-Gamal Signature Scheme

The verification algorithm compares βrrs mod p and
 αm mod p. 

Noting that from the definition of s, we have m = sk + ar 
mod (p-1), we see that:
               αm =αsk+ar = (αk)s(αa)r = rsβr mod p. 



El-Gamal Signature Scheme
Now suppose that Frank wants to forge Alice's signature on 
a message m without knowing Alice's secret exponent a. 
He can pick r randomly (just as Alice does) and then has to 
find an s so that βrrs = αm mod p. Rewritten, this amounts to 
solving rs = β-rαm mod p. Which is the discrete logarithm 
problem. On the other hand, if he first selects a random s, 
then he must solve the congruence βrrs = αm mod p for r. 
This is a problem for which no feasible solution is known 
and it does not seem to be related to any well studied 
problem such as the Discrete Log problem. There remains 
the possibility that Frank can choose r and s simultaneously 
to get a valid signature. No one has discovered a way to do 
this, but then again, no one has proved that it can't be done.



El-Gamal Signature Scheme
Unlike the RSA signature scheme, Frank can not forge Alice's 
signature on "random messages" by randomly picking r and s and 
calculating a message m so that (m,r,s) is a valid Alice signature [to 
do this would require solving the discrete log problem]. However, 
Frank can create valid Alice signatures by selecting r,s and m 
simultaneously. To do this, Frank picks two integers, i and j (less 
than p-1) such that gcd(j,p-1) = 1. Then Frank calculates:
          r = αiβj mod p 
          s = -rj-1 mod (p-1)
          m = is mod (p-1)
Checking the verification algorithm, we see that:
                    βrrs = βr(αiβj)s mod p 
                          = βr(αisβjs) mod p 
                          = βr(αisβ-r) mod p 
                          = αm mod p.



El-Gamal Signature Scheme

There are some protocol failures that would compromise 
the El-Gamal signature scheme. The first involves the 
secret exponent k. Should this become known, then given a 
signature (m,r,s) the congruence ar = m-ks mod (p-1), has 
d = gcd(r,p-1) possible solutions for a. The correct one can 
be found by verifying that β = αa mod p. This gives Alice's 
secret exponent a and so breaks the system. 



El-Gamal Signature Scheme
A second protocol failure would occur if Alice used the same 
exponent k for two different messages. If Alice did this for two 
messages, m1 and m2, then the r in the signatures would be the 
same (and Frank would notice this failure of protocol). If the 
corresponding s values are s1 and s2, then
       -ar = s1k - m1 = s2k - m2 mod (p-1), and so, 
       (s1 - s2)k = m1 - m2 mod (p-1). 
Let d = gcd(s1-s2, p-1). There are d solutions to the congruence, 
and d will usually be small. The correct value of k can be obtained 
by checking these d possibilities to see which satisfies r = αk mod 
p. Once k is determined, we can calculate a as above and break the 
system.



Hash Functions
One of the problems with the above mentioned signature schemes is 
that the signatures are as long or longer than the messages that they 
sign. When the messages are large this can become a significant 
difficulty. One way to deal with this is to use cryptographic hash 
functions. A hash function h takes a message m of arbitrary length 
and produces a message digest h(m) of some fixed length. In order 
for a hash function to be useful in cryptographic work, it should 
satisfy the following conditions:
1. The message digest h(m) should be calculated very quickly.
2. The hash function h should be a one-way function, that is, given 
a message digest h(m), it should be computationally infeasible to 
obtain the message m.
3. The hash function h should be strongly collision free, meaning 
that it should be computationally infeasible to find two messages 
m1 and m2 so that h(m1) = h(m2).



Hash Functions
There are several professional strength hash functions available. In 
1990, Rivest proposed the MD4 Hash function and the following 
year he presented a strengthened version known as MD5. These 
hash functions produce message digests of 128-bit size for arbitrary 
length messages. In 1993 (and modified in 1994) the federal 
government adopted the Secure Hash Standard (SHS) which 
produces message digests of 160-bits. These functions (algorithms) 
are fast but complicated and their analysis is difficult. No proof is 
known that they do satisfy the 2nd and 3rd conditions for a 
cryptographic hash function, but in practice they seem to work 
quite well.
We shall examine the discrete log hash function due to Chaum, van 
Heijst and Pfitzmann. Unfortunately, the calculation of this 
function is too slow to be of practical use, but it is simple enough to 
permit an analysis of its cryptographic security.



Hash Functions
Select a large prime p such that q = (p-1)/2 is also prime. Choose 
two primitive roots α and β of Zp. For a message m with m < q2 we 
write m = b + cq with 0 ≤ b,c < q. We then set h(m) = αbβc mod p.
In this set up, since α is a primitive element, there exists an 
exponent a such that β = αa mod p. Of course finding this exponent 
involves solving the discrete log problem in this field. If, however, 
we can find a collision for this hash function, i.e., different 
messages m1 = r + sq and m2 = t + uq with h(m1) = h(m2), then we 
can easily calculate the exponent a. This follows since,
                     αrβs = αtβu mod p, implies
                   αr-t = βu-s = αa(u-s) mod p, and so, 
                       a(u-s) = (r-t) mod (p-1). 
Let d = gcd(u-s, p-1). There will be d solutions (for a) of this last 
congruence. 



Hash Functions

Since p - 1 = 2q and q is prime, the only possibilities for d 
are 1,2,q and 2q = p-1. Since 0 ≤ u,s < q, we have that
 -q < u-s < q, so if u is not equal to s, any divisor of u-s 
(such as d) must be less than q, i.e., d = 1 or 2. On the 
other hand, if u = s, then from the congruence we obtain r 
= t, so the messages are the same, contrary to our 
assumption. If 
d = 2, we can check the two possible values to obtain the 
correct exponent a. So, if we assume that finding discrete 
logarithms is computationally infeasible, then it follows 
that this hash function is strongly collision free.



Hash Functions
In the digital signature application, a cryptographic hash 
function is made public. The signature algorithm is then 
applied to the message digest obtained from this hash 
function. The message and this signature are then sent. 
The verification algorithm is applied to the signed 
message digest and compared with the message digest 
that is recomputed from the message. Signatures in this 
version are much shorter than the messages that they 
sign. The cryptographic properties of the hash function 
prevent forgeries. However, since the message digests are 
of fixed size, there are not as many of them as there are 
possible messages. This leads to another type of attack 
which can be launched against digital signature schemes 
which employ hash functions.



Birthday Attacks
The well known "Birthday Paradox" (not really a paradox, just a 
surprising result) that in a randomly selected group of at least 23 
people, the probability of two having the same birthday is at least 
1/2, leads to a method for finding collisions of a hash function 
known as the Birthday Attack.

Consider a set Z with n elements (think of this as the set of hash 
digests). We wish to calculate the probability that k randomly 
selected elements of Z will contain no equal elements (no 
collisions). As the probability of selecting a particular element is 
1/n, we calculate this probability as follows: The first choice is 
arbitrary. The probability that the second choice is distinct from the 
first is 1-1/n, while the probability that the third is distinct from the 
first two is 1 - 2/n, etc. 



Birthday Attacks
Thus, the probability that k elements are selected with no collisions 
is
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n  = ∏
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If x is a small real number, then 1-x ≈ e-x which is derived by taking 
the first two terms of the series expansion 
                              e-x = 1 - x + x2/2! - x3/3! ... . 
Therefore, an estimate for our probability is 
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Birthday Attacks
Letting p be the probability of obtaining a collision, we have p ≈ 1 - 
e-k(k-1)/2n. So,

e
− k k−1

2 n ≈ 1− p
−k k−1

2 n
≈ ln 1− p

k k−1
2 n

≈ ln  1
1− p



k k−1 ≈ 2 n ln  1
1− p



k ≈  2 n ln  1
1− p



With p = ½, we have:

Thus, by selecting just slightly over SQRT(n) random choices from Z, 
we obtain a collision with probability at least 50%.

k ≈ 1.17n .



Birthday Attacks

In the Birthday Paradox, n = 365 and our approximation gives 
k ~ 22.3. In the Birthday attack, if the message digests were of x-bit 
length, there would be n = 2x digests, and by selecting 2x/2 arbitrary 
messages and applying the hash function to them, there will be a 
50% chance of obtaining a collision. Thus, for 40-bit message 
digests, just over 220 (about a million) random messages would be 
needed to find a collision with 50% probability. This is not very 
secure. It is usually suggested that the minimum acceptable size of 
a message digest is 128-bits to avoid a Birthday attack. The 160-bit 
message digest of DSS is even more secure against this attack.



Digital Signature Standard

The Digital Signature Standard (DDS) is a modification of 
the El-Gamal Signature Scheme. First proposed in 1991, 
it was adopted as a federal standard in 1994. The 
modification gives a signature to a 160-bit message which 
is only 320 bits long. Thus, the algorithm has been 
designed to work with a hash function that produces 160 
bit message digests (such as the SHS).



Digital Signature Standard

The user of this scheme, say Alice, first finds a prime q which is 
160 bits long and then chooses a prime p so that q|p-1. The discrete 
log problem should be hard for this prime p. (The initial version of 
the scheme had p chosen as a 512 bit number, but later versions 
permitted the size of p to be larger, up to 1024 bits.). Now, Alice 
chooses a qth root of unity mod p, that is an α such that 
αq = 1 mod p (this can be done by finding a primitive root mod p, 
say g, and calculating α = g(p-1)/q mod p.) Alice then chooses a 
secret exponent a, with 0 < a < q-1, and calculates β = αa mod p. 
The values of p, q, α, and β are made public and the exponent a is 
kept secret. 



Digital Signature Standard
To sign a message m, Alice first selects a random secret integer k, 
with 0 < k < q-1. She then computes, r = (αk mod p) mod q and 
s = k-1(m + ar) mod q. Her signature is then (m,r,s). In order for Bob 
to verify this signature, he computes u = s-1m mod q and v = s-1r 
mod q. He then computes w = (αuβv mod p) mod q and accepts the 
signature if and only if w = r.
To see why this works, from the definition of s it follows that:
                         sk =( m + ar ) mod q, so 
                    k = s-1m + s-1ar = u + av mod q.

Thus, αk = αu + av = αuβv mod p. Therefore, taking the mod q values, 
we have r = w.



Digital Signature Standard

As in the El-Gamal scheme, the exponent a must be kept 
secret, and the secret numbers k should never be used 
twice. DSS is considered to be stronger than El-Gamal, 
since in this scheme the secret number k is harder to 
obtain from r because of the reduction mod q. The 
verification step in DSS is also faster than the 
corresponding step in El-Gamal, since there are fewer 
modular exponentiations to perform, and this is an 
important practical consideration. 



Euler Pseudoprimes
If n is an odd composite number and b is an integer with 
(n,b) = 1 such that:

then n is called an Euler pseudoprime to the base b.

bn−1/2≡  b
n  mod n

Suppose we wish to find the number of bases for which 45 
is an Euler pseudoprime. 
  We first note that the only bases that need be considered 
are {1,2,4,7,8,11,13,14,16,17,19,22,23,26,28,
            29,31,32,34,37,38,41,43,44}
i.e., those integers less than 45 which are not divisible by 3 
or 5.



Euler Pseudoprimes

bn−1/2≡  b
n  mod n

The left hand side is b22, a non-zero square, and the right 
hand side is either 0, +1 or -1. Raising each of the possible 
bases to the 22nd power mod 45, shows that the only 
possible values are 1,19,26 and 44 = ±1, ±19 each giving a 
value of +1. Now calculate the Jacobi symbol for these 
choices: Note that in this case we have - 

 b
45  =  b

3
2

 b
5  =  b

5 



Euler Pseudoprimes
So, we have

 1
5 = 1

 19
5  =  4

5  = 1

 26
5  =  1

5  = 1

 44
5  =  4

5  = 1

So, these 4 bases have 45 as an Euler pseudoprime.


