
Digital Signature
Schemes

Introduction
The conventional handwritten signature on a document is
used to certify that the signer is responsible for the
content of the document. The signature is physically a
part of the document and while forgery is certainly
possible, it is difficult to do so convincingly. Trying to
mimic a handwritten signature in a digital medium leads
to a difficulty since cut and paste operations can be used
to create a perfect forgery. Thus, we need to have a way
of signing messages digitally which is functionally
equivalent to a physical signature, but which is at least as
resistant to forgery as its physical counterpart.

Introduction
Schemes which provide this functionality are called Digital
Signature Schemes. A Digital Signature Scheme will have two
components, a private signing algorithm which permits a user to
securely sign a message and a public verification algorithm which
permits anyone to verify that the signature is authentic. The signing
algorithm needs to "bind" a signature to a message in such a way
that the signature can not be pulled out and used to sign another
document, or have the original message modified and the signature
remain valid. For practical reasons it would be necessary for both
algorithms to be relatively fast and if small computers such as
smart cards are to be used, the algorithms can not be too
computationally complex.
There are many Digital Signature Schemes which meet these
conditions, but we shall only investigate a few of the most popular
ones.

RSA Signatures
As we have previously noted, in order for Bob to sign a message m,
he raises m to his private decryption exponent mod n. This is the
signature algorithm. Anyone can verify this signature by raising md
to Bob's public encryption exponent mod n. This is the verification
algorithm. Application of the verification algorithm to a valid
signature yields the message m. The verifier must know the message
m in order to be sure that this is the message that Bob signed, so in
this application Bob must send the ordered pair (m, md mod n).
Some care must be taken in the construction of the message to be
signed in this way. For instance, if m is the instruction to Bob's bank
to issue a check to Alice, then if Alice intercepts the ordered pair,
she can send the same pair to Bob's bank whenever she is a little low
on cash. To prevent this kind of abuse, when it matters, messages
should include dates and other such items which prevent the
message from being reused.

RSA Scheme
Forgeries of Bob's signature are easy to construct. The
requirement for a valid signature is that raising the second
coordinate to Bob's public encryption exponent e gives the
first coordinate. Frank the "forger" can take any number y,
calculate x = ye mod n and send the pair (x,y). This will be
verified as Bob signing the message x. Frank's problem is
that he has no control over the "message" x, which will
normally be just random nonsense. Without breaking the
RSA cryptosytem, Frank has only a negligible chance of
finding a meaningful message, let alone a desired message.

El-Gamal Signature Scheme
Unlike the RSA Signature scheme, which can be used as
both a cryptosystem and a signature scheme, this signature
scheme is designed specifically for signatures and is based
on the discrete logarithm problem. As with the El-Gamal
cryptosystem, computations are carried out in Zp, where p
is a prime such that the discrete log problem is intractable
in Zp. A generator α of Zp* is fixed, and each user selects a
secret exponent a, and publishes the value β = αa mod p. If
Alice wishes to sign a message m, she will first select a
random secret integer k with gcd(k,p-1) = 1. She then
computes r = αk mod p and then computes s = k-1(m -ar)
mod (p-1). The signature is the triple (m,r,s).

El-Gamal Signature Scheme

The verification algorithm compares βrrs mod p and
 αm mod p.

Noting that from the definition of s, we have m = sk + ar
mod (p-1), we see that:
 αm =αsk+ar = (αk)s(αa)r = rsβr mod p.

El-Gamal Signature Scheme
Now suppose that Frank wants to forge Alice's signature on
a message m without knowing Alice's secret exponent a.
He can pick r randomly (just as Alice does) and then has to
find an s so that βrrs = αm mod p. Rewritten, this amounts to
solving rs = β-rαm mod p. Which is the discrete logarithm
problem. On the other hand, if he first selects a random s,
then he must solve the congruence βrrs = αm mod p for r.
This is a problem for which no feasible solution is known
and it does not seem to be related to any well studied
problem such as the Discrete Log problem. There remains
the possibility that Frank can choose r and s simultaneously
to get a valid signature. No one has discovered a way to do
this, but then again, no one has proved that it can't be done.

El-Gamal Signature Scheme
Unlike the RSA signature scheme, Frank can not forge Alice's
signature on "random messages" by randomly picking r and s and
calculating a message m so that (m,r,s) is a valid Alice signature [to
do this would require solving the discrete log problem]. However,
Frank can create valid Alice signatures by selecting r,s and m
simultaneously. To do this, Frank picks two integers, i and j (less
than p-1) such that gcd(j,p-1) = 1. Then Frank calculates:
 r = αiβj mod p
 s = -rj-1 mod (p-1)
 m = is mod (p-1)
Checking the verification algorithm, we see that:
 βrrs = βr(αiβj)s mod p
 = βr(αisβjs) mod p
 = βr(αisβ-r) mod p
 = αm mod p.

El-Gamal Signature Scheme

There are some protocol failures that would compromise
the El-Gamal signature scheme. The first involves the
secret exponent k. Should this become known, then given a
signature (m,r,s) the congruence ar = m-ks mod (p-1), has
d = gcd(r,p-1) possible solutions for a. The correct one can
be found by verifying that β = αa mod p. This gives Alice's
secret exponent a and so breaks the system.

El-Gamal Signature Scheme
A second protocol failure would occur if Alice used the same
exponent k for two different messages. If Alice did this for two
messages, m1 and m2, then the r in the signatures would be the
same (and Frank would notice this failure of protocol). If the
corresponding s values are s1 and s2, then
 -ar = s1k - m1 = s2k - m2 mod (p-1), and so,
 (s1 - s2)k = m1 - m2 mod (p-1).
Let d = gcd(s1-s2, p-1). There are d solutions to the congruence,
and d will usually be small. The correct value of k can be obtained
by checking these d possibilities to see which satisfies r = αk mod
p. Once k is determined, we can calculate a as above and break the
system.

Hash Functions
One of the problems with the above mentioned signature schemes is
that the signatures are as long or longer than the messages that they
sign. When the messages are large this can become a significant
difficulty. One way to deal with this is to use cryptographic hash
functions. A hash function h takes a message m of arbitrary length
and produces a message digest h(m) of some fixed length. In order
for a hash function to be useful in cryptographic work, it should
satisfy the following conditions:
1. The message digest h(m) should be calculated very quickly.
2. The hash function h should be a one-way function, that is, given
a message digest h(m), it should be computationally infeasible to
obtain the message m.
3. The hash function h should be strongly collision free, meaning
that it should be computationally infeasible to find two messages
m1 and m2 so that h(m1) = h(m2).

Hash Functions
There are several professional strength hash functions available. In
1990, Rivest proposed the MD4 Hash function and the following
year he presented a strengthened version known as MD5. These
hash functions produce message digests of 128-bit size for arbitrary
length messages. In 1993 (and modified in 1994) the federal
government adopted the Secure Hash Standard (SHS) which
produces message digests of 160-bits. These functions (algorithms)
are fast but complicated and their analysis is difficult. No proof is
known that they do satisfy the 2nd and 3rd conditions for a
cryptographic hash function, but in practice they seem to work
quite well.
We shall examine the discrete log hash function due to Chaum, van
Heijst and Pfitzmann. Unfortunately, the calculation of this
function is too slow to be of practical use, but it is simple enough to
permit an analysis of its cryptographic security.

Hash Functions
Select a large prime p such that q = (p-1)/2 is also prime. Choose
two primitive roots α and β of Zp. For a message m with m < q2 we
write m = b + cq with 0 ≤ b,c < q. We then set h(m) = αbβc mod p.
In this set up, since α is a primitive element, there exists an
exponent a such that β = αa mod p. Of course finding this exponent
involves solving the discrete log problem in this field. If, however,
we can find a collision for this hash function, i.e., different
messages m1 = r + sq and m2 = t + uq with h(m1) = h(m2), then we
can easily calculate the exponent a. This follows since,
 αrβs = αtβu mod p, implies
 αr-t = βu-s = αa(u-s) mod p, and so,
 a(u-s) = (r-t) mod (p-1).
Let d = gcd(u-s, p-1). There will be d solutions (for a) of this last
congruence.

Hash Functions

Since p - 1 = 2q and q is prime, the only possibilities for d
are 1,2,q and 2q = p-1. Since 0 ≤ u,s < q, we have that
 -q < u-s < q, so if u is not equal to s, any divisor of u-s
(such as d) must be less than q, i.e., d = 1 or 2. On the
other hand, if u = s, then from the congruence we obtain r
= t, so the messages are the same, contrary to our
assumption. If
d = 2, we can check the two possible values to obtain the
correct exponent a. So, if we assume that finding discrete
logarithms is computationally infeasible, then it follows
that this hash function is strongly collision free.

Hash Functions
In the digital signature application, a cryptographic hash
function is made public. The signature algorithm is then
applied to the message digest obtained from this hash
function. The message and this signature are then sent.
The verification algorithm is applied to the signed
message digest and compared with the message digest
that is recomputed from the message. Signatures in this
version are much shorter than the messages that they
sign. The cryptographic properties of the hash function
prevent forgeries. However, since the message digests are
of fixed size, there are not as many of them as there are
possible messages. This leads to another type of attack
which can be launched against digital signature schemes
which employ hash functions.

Birthday Attacks
The well known "Birthday Paradox" (not really a paradox, just a
surprising result) that in a randomly selected group of at least 23
people, the probability of two having the same birthday is at least
1/2, leads to a method for finding collisions of a hash function
known as the Birthday Attack.

Consider a set Z with n elements (think of this as the set of hash
digests). We wish to calculate the probability that k randomly
selected elements of Z will contain no equal elements (no
collisions). As the probability of selecting a particular element is
1/n, we calculate this probability as follows: The first choice is
arbitrary. The probability that the second choice is distinct from the
first is 1-1/n, while the probability that the third is distinct from the
first two is 1 - 2/n, etc.

Birthday Attacks
Thus, the probability that k elements are selected with no collisions
is

1− 1
n 1− 2

n ⋯ 1− k−1
n = ∏

i=1

k−1

1− i
n .

If x is a small real number, then 1-x ≈ e-x which is derived by taking
the first two terms of the series expansion
 e-x = 1 - x + x2/2! - x3/3!
Therefore, an estimate for our probability is

∏
i=1

k−1

1− i
n ≈∏

i=1

k−1

e
− i

n = e
− k k−1

2 n .

Birthday Attacks
Letting p be the probability of obtaining a collision, we have p ≈ 1 -
e-k(k-1)/2n. So,

e
− k k−1

2 n ≈ 1− p
−k k−1

2 n
≈ ln 1− p

k k−1
2 n

≈ ln 1
1− p

k k−1 ≈ 2 n ln 1
1− p

k ≈ 2 n ln 1
1− p

With p = ½, we have:

Thus, by selecting just slightly over SQRT(n) random choices from Z,
we obtain a collision with probability at least 50%.

k ≈ 1.17n .

Birthday Attacks

In the Birthday Paradox, n = 365 and our approximation gives
k ~ 22.3. In the Birthday attack, if the message digests were of x-bit
length, there would be n = 2x digests, and by selecting 2x/2 arbitrary
messages and applying the hash function to them, there will be a
50% chance of obtaining a collision. Thus, for 40-bit message
digests, just over 220 (about a million) random messages would be
needed to find a collision with 50% probability. This is not very
secure. It is usually suggested that the minimum acceptable size of
a message digest is 128-bits to avoid a Birthday attack. The 160-bit
message digest of DSS is even more secure against this attack.

Digital Signature Standard

The Digital Signature Standard (DDS) is a modification of
the El-Gamal Signature Scheme. First proposed in 1991,
it was adopted as a federal standard in 1994. The
modification gives a signature to a 160-bit message which
is only 320 bits long. Thus, the algorithm has been
designed to work with a hash function that produces 160
bit message digests (such as the SHS).

Digital Signature Standard

The user of this scheme, say Alice, first finds a prime q which is
160 bits long and then chooses a prime p so that q|p-1. The discrete
log problem should be hard for this prime p. (The initial version of
the scheme had p chosen as a 512 bit number, but later versions
permitted the size of p to be larger, up to 1024 bits.). Now, Alice
chooses a qth root of unity mod p, that is an α such that
αq = 1 mod p (this can be done by finding a primitive root mod p,
say g, and calculating α = g(p-1)/q mod p.) Alice then chooses a
secret exponent a, with 0 < a < q-1, and calculates β = αa mod p.
The values of p, q, α, and β are made public and the exponent a is
kept secret.

Digital Signature Standard
To sign a message m, Alice first selects a random secret integer k,
with 0 < k < q-1. She then computes, r = (αk mod p) mod q and
s = k-1(m + ar) mod q. Her signature is then (m,r,s). In order for Bob
to verify this signature, he computes u = s-1m mod q and v = s-1r
mod q. He then computes w = (αuβv mod p) mod q and accepts the
signature if and only if w = r.
To see why this works, from the definition of s it follows that:
 sk =(m + ar) mod q, so
 k = s-1m + s-1ar = u + av mod q.

Thus, αk = αu + av = αuβv mod p. Therefore, taking the mod q values,
we have r = w.

Digital Signature Standard

As in the El-Gamal scheme, the exponent a must be kept
secret, and the secret numbers k should never be used
twice. DSS is considered to be stronger than El-Gamal,
since in this scheme the secret number k is harder to
obtain from r because of the reduction mod q. The
verification step in DSS is also faster than the
corresponding step in El-Gamal, since there are fewer
modular exponentiations to perform, and this is an
important practical consideration.

Euler Pseudoprimes
If n is an odd composite number and b is an integer with
(n,b) = 1 such that:

then n is called an Euler pseudoprime to the base b.

bn−1/2≡ b
n mod n

Suppose we wish to find the number of bases for which 45
is an Euler pseudoprime.
 We first note that the only bases that need be considered
are {1,2,4,7,8,11,13,14,16,17,19,22,23,26,28,
 29,31,32,34,37,38,41,43,44}
i.e., those integers less than 45 which are not divisible by 3
or 5.

Euler Pseudoprimes

bn−1/2≡ b
n mod n

The left hand side is b22, a non-zero square, and the right
hand side is either 0, +1 or -1. Raising each of the possible
bases to the 22nd power mod 45, shows that the only
possible values are 1,19,26 and 44 = ±1, ±19 each giving a
value of +1. Now calculate the Jacobi symbol for these
choices: Note that in this case we have -

 b
45 = b

3
2

 b
5 = b

5

Euler Pseudoprimes
So, we have

 1
5 = 1

 19
5 = 4

5 = 1

 26
5 = 1

5 = 1

 44
5 = 4

5 = 1

So, these 4 bases have 45 as an Euler pseudoprime.

