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1. The Semantic Web


 
Web was “invented” by Tim Berners-Lee (amongst others), 
a physicist working at CERN



 
TBL’s original vision of the Web was much more ambitious 
than the reality of the existing (syntactic) Web



 
TBL (and others) have since been working towards 
realising this vision, which has become known as the 
Semantic Web
• E.g., article in May 2001 issue of Scientific American…

“... a goal of the Web was that, if the interaction between person and 
hypertext could be so intuitive that the machine-readable information 
space gave an accurate representation of the state of people's 
thoughts, interactions, and work patterns, then machine analysis could 
become a very powerful management tool, seeing patterns in our work 
and facilitating our working together through the typical problems which 
beset the management of large organizations.”

http://www.w3.org/People/Berners-Lee/
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Scientific American, May 2001
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Beware of the Hype



 
A hype cycle is a graphic representation of the maturity, 
adoption and business application of a specific 
technology.



 
Since 1995, Gartner has used hype cycles to 
characterize the over-enthusiasm or "hype" and 
subsequent disappointment that typically happens with 
the introduction of new technologies
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Beware of the Hype

Images from Christine Thompson and David Booth



 
Hype seems to suggest that Semantic 
Web  means: “semantics + web = AI”
• “A new form of Web content that is 

meaningful to computers will unleash 
a revolution of new abilities”



 
More realistic to think of it as meaning: 
“semantics + web + AI = more useful 
web”
• Realising the complete “vision” is too 

hard for now (probably)
• But we can make a start by adding 

semantic annotation to web 
resources
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Today: the Syntactic Web


 
A hypermedia, a digital library
• A library of documents called (web pages) interconnected 

by a hypermedia of links


 
A database, an application platform
• A common portal to applications accessible through web 

pages, and presenting their results as web pages


 
A platform for multimedia
• e.g., BBC Radio anywhere in the world



 
A naming scheme
• Unique identity for those documents

A place where computers do the presentation (easy) and 
people do the linking and interpreting (hard).
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Impossible (?) using the Syntactic Web



 
Complex queries involving background knowledge
• Find information about “animals that use sonar but are 

not either bats or dolphins”


 
Locating information in data repositories
• Travel enquiries
• Prices of goods and services
• Results of human genome experiments



 
Finding and using web services
• Visualise surface interactions between two proteins



 
Delegating complex tasks to web agents
• Book me a holiday next weekend somewhere warm, not 

too far away, and where they speak French or English
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What is the Problem?


 

Make web resources more accessible to 
automated processes


 
Extend existing rendering markup with 
semantic markup
• Metadata annotations that describe 

content/function of web accessible resources


 
Use Ontologies to provide vocabulary for 
annotations
• Formal specification is accessible to machines
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Ontology in Philosophy

• Ontology = a philosophical discipline - a   
branch of philosophy that deals with the 
nature and the organisation of reality


 

Science of Being (Aristotle, Metaphysics, IV, 1)
"the science of being qua being" 


 

Tries to answer the questions:


 
What characterizes being?


 
Eventually, what is being?
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Ontology in Computer Science


 
A specification of a conceptualization or a set of 
knowledge terms for a particular domain, including

• The vocabulary: concepts and relations

• The semantic interconnections: relationships among 
concepts and relations

• Some rules of inference



 
An ontology describes a formal specification of a 
certain domain:

• Shared understanding of a domain of interest

• Formal and machine manipulable model of a domain 
of interest
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The Semantic Web Stack
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Parenthesis – The Web Services Stack

Schema from Service-Oriented Computing: Semantics, Processes, Agents

 
– Munindar P. Singh and Michael N. Huhns, Wiley, 2005
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2. RDF


 

Provides a basis for knowledge representation


 
Based on KR ideas (frames) but uses the Web 
to enhance interoperability


 

XML 
• Gives a document tree
• Doesn’t identify the content represented by a 

document, where content means


 

Concepts the document is about


 

Relationships among them

• Enables multiple representations for the same content
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RDF


 

RDF captures descriptions of resources


 
A resource is an “addressable” object
• Of which a description can be given
• Which is identified via a URI (Uniform 

Resource Identifier)


 
A literal is something simpler
• A value, e.g., string or integer
• Cannot be given a description
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RDF


 

RDF is based on a simple grammar


 
An RDF document is just a set of statements or 
triples


 

Each statement consists of
• Subject: a resource
• Object: a resource or a literal
• Predicate: a resource


 

RDF uses:
• XML serialization
• Standard XML namespace syntax
• Namespaces are defined by the RDF standard



 

Typically abbreviated rdf and rdfs


 
Comes with RDFS - a meta-vocabulary
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RDF
<?xml version='1.0' encoding='UTF-8'?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/">
<rdf:Description rdf:about="http://www.wiley.com/SOC">
<dc:title>Service-Oriented Computing</dc:title>
<dc:creator>Munindar</dc:creator>
<dc:creator>Michael</dc:creator>
<dc:publisher>Wiley</dc:publisher>

</rdf:Description>
</rdf:RDF>

Service-Oriented Computing: Semantics, Processes, Agents

 
– Munindar P. Singh and Michael N. Huhns, Wiley, 2005
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RDF Schema


 

Analogous to an object-oriented type 
system built on top of RDF.


 
RDFS defines:
• rdfs:Class, rdfs:subClassOf
• rdfs:Resource, rdfs:Literal
• rdfs:Property, rdfs:subPropertyOf
• rdfs:range, rdfs:domain
• rdfs:label, rdfs:comment, rdfs:seeAlso


 

OWL - greatly enhances the above
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3. OWL


 

OWL standardizes additional constructs to 
be able to capture more meaning
• Builds on RDF, by limiting it
• Gives formal semantics to new terms


 

Based on description logic


 
DL Concepts = OWL Classes


 
DL individuals = OWL Individuals


 
DL Roles = OWL Properties
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Picture from Service-Oriented Computing: Semantics, Processes, Agents -

 

Munindar

 

Singh and Michael Huhns, Wiley 2005

OWL Entities and Relationships
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3.1 OWL – Classes



 
OWL Classes correspond to concepts in DL



 
owl:Class –

 
defined as a subclass of rdfs:Class



 
All OWL classes are members of owl:Class

Owl have some predefined classes:


 
Predefined class owl:Thing –

 
top of class hierarchy (T)



 
Predefined class owl:Nothing –no instances, bottom of hierarchy, 
a subclass of any other class ()
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Classes


 

Simple examples:
<owl:Class

 
rdf:ID="Winery"/>

<owl:Class
 

rdf:ID="Region"/>
<owl:Class

 
rdf:ID="ConsumableThing"/>


 

rdf:ID defines the name of the class


 
Region

 
may be referred as

• rdf:resource="#Region"


 

<rdf:about="#Winery"/>
 

may be used to extend the 
class  "Winery"
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Subclasses



 
Class definitions

<owl:Class
 

rdf:ID="Winery"/>
<owl:Class

 
rdf:ID="Region"/>

<owl:Class
 

rdf:ID="ConsumableThing"/>



 
A class may have superclasses

<owl:Class
 

rdf:ID="Mammals">
<rdfs:subClassOf

 
rdf:resource="#Animals"/>

<rdfs:subClassOf
 

rdf:resource="#Vertebrate"/>
</owl:Class>
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Subclasses


 
Subclasses/Superclasses

 
define a subsumtion

 
relation 

<owl:Class
 

rdf:ID="Pasta">
<rdfs:subClassOf

 
rdf:resource="#ConsumableThing"/>

...
</owl:Class>



 
DL equivalent 

Pasta      ConsumableThing


 
Use
<owl:Class

 
rdf:about="Pasta">

<rdfs:subClassOf
 

rdf:resource="#EdibleThing"/>
...

</owl:Class>

Pasta      EdibleThing

x Pasta(x) ConsumableThing(x)
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3.2 Individuals


 
Describe members of a class



 
Declare an individual named CentralCoastRegion

 
as a member of 

class Region
<Region rdf:ID="CentralCoastRegion"/>



 
CentralCoastRegion: Region



 
This is equivalent to
<owl:Thing

 
rdf:ID="CentralCoastRegion">

<rdf:type
 

rdf:resource="#Region"/>
</owl:Thing>



 
rdf:type

 
is an RDF property which links an individual to the class 

to which belongs
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Individuals

<Region rdf:ID="SantaCruzRegion">
<locatedIn

 
rdf:resource="#CaliforniaRegion"/>

</Region>

<Winery rdf:ID="SantaCruzVineyard"/>

<CabernetSauvignon
rdf:ID="SantaCruzVineyardCabernetSauvignon">

<locatedIn
 

rdf:resource="#SantaCruzRegion"/>
<hasMaker

 
rdf:resource="#SantaCruzVineyard"/>

</CabernetSauvignon>

<owl:Class

 

rdf:ID=“CabernetSauvignon">
<rdfs:subClassOf

 

rdf:resource="#Winery"/>
</owl:Class>

<owl:Class

 

rdf:ID="Winery"/>
<owl:Class

 

rdf:ID="Region"/>
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3.3 Properties


 
2 types of properties:
•

 
Object properties (a)


 
instances of owl:ObjectProperty


 
relate instances of 2 classes


 
domain + range = instances of owl:Class ; are owl:Thing 
(unless otherwise specified)

•
 

Data type properties (b)


 
instances of owl:DatatypeProperty


 
relate an instance of a class with an instance of a data type


 
domain is the same ; range = an instance of 
rdfs:DataType and is an owl:DataRange

pred(x,y) –

 

x: inst class
y: inst class

pred(x,y) –

 

x: inst class
y: inst data type
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(a) Object properties


 
A sequence of OWL elements are (implicitly) linked by 
conjunctions


 

Examples of object properties

<owl:ObjectProperty rdf:ID="madeFromGrape">
<rdfs:domain rdf:resource="#Wine"/>
<rdfs:range rdf:resource="#WineGrape"/>

</owl:ObjectProperty>

T     madeFromGrape.WineGrape

 

madeFromGrape.T

 

Wine

 x madeFromGrape(y,x)  Wine(y) x madeFromGrape(y,x)  WineGrape(x)
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Properties and sub-properties


 

rdfs:subPropertyOf


 
rdfs:domain


 

rdfs:range


 
rdfs:equivalentProperty


 

rdfs:inverseOf
 

–
 

only for object properties
<owl:ObjectProperty

 
rdf:ID="livesIn">

<rdfs:domain
 

rdf:resource="#Animal"/>
<rdfs:range

 
rdf:resource="#Location"/>

<rdfs:subPropertyOf
 

rdf:resource="#hasHabitat"/>
<rdfs:equivalentProperty

 
rdf:resource="#hasHome"/>

</owl:ObjectProperty>
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Another example of object properties

<owl:Class
 

rdf:ID="WineDescriptor"/>
<owl:Class

 
rdf:ID="WineColor">

<rdfs:subClassOf
 

rdf:resource="#WineDescriptor"/>
...
</owl:Class>
<owl:ObjectProperty

 
rdf:ID="hasWineDescriptor">

<rdfs:domain
 

rdf:resource="#Wine"/>
<rdfs:range

 
rdf:resource="#WineDescriptor"/>

</owl:ObjectProperty>
<owl:ObjectProperty

 
rdf:ID="hasColor">

<rdfs:subPropertyOf
 

rdf:resource="#hasWineDescriptor"/>
<rdfs:domain

 
rdf:resource="#Wine"/>

<rdfs:range
 

rdf:resource="#WineColor"/>
</owl:ObjectProperty>

WineColor

WineDescriptor Wine

hasWineDescriptor

hasColor
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(b) Data type properties


 
Represent relations between class instances and data types XML 
Schema



 
All OWL engines must support at least the data types:
• xsd:integer

 
si

 
xsd:string



 
Example

<owl:DatatypeProperty
 

rdf:ID="yearValue">
<rdfs:domain

 
rdf:resource="#VintageYear"/>

<rdfs:range
 

rdf:resource="&xsd;positiveInteger"/>
</owl:DatatypeProperty>



 
yearValue

 
binds owl:Thing

 
to positive integer values
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More on properties


 
R is Transitive if and only if 

xRy and yRz imply xRz



 
R is Symmetric if and only if

xRy iff yRx



 
R is Functional if and only if

xRy and xRz implies y = z



 
R1 and R2 are Inverse Properties if and only if

xR1 y  iff yR2 x
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Examples taken from the Wine Ontology



 

http://www.w3.org/TR/owl-guide/wine.rdf



 

http://oaei.ontologymatching.org/tests/102/onto.html

http://www.w3.org/TR/owl-guide/wine.rdf
http://oaei.ontologymatching.org/tests/102/onto.html
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3.4 Class constructors


 
How can we build a class?

(a) By specifying a class name
<owl:Class

 
rdf:ID="WineDescriptor"/>

(b) By specifying a class name + descendancy
<owl:Class

 
rdf:ID="WineColor">

<rdfs:subClassOf
 

rdf:resource="#WineDescriptor"/>
</owl:Class>

(c) By using logical operators:  owl:IntersectionOf
 

(   ),
 owl:unionOf

 
(    ),

 
owl:complementOf

 
(   )

or enumeration owl:oneOf
 

(list all individuals)
Used generally with the data type rdf:parseType='Collection'

(d) Impose restrictions on properties = powerful mechanism
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Class constructors
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Restrictions


 
Allows building classes based on restrictions applied 
to properties (d)


 

The objects that satisfy the restriction on the property 
make an anonymous class


 

owl:Restriction
 

–
 

subclass of owl:Class


 
A restriction may be of 2 types
•

 
owl:ObjectRestriction

 
–

 
applied to an Object Property

•
 

owl:DataRestriction
 

–
 

applied to a Data type Property


 

The property on which the restriction applies is 
specified by owl:onProperty
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Restrictions
<owl:Class

 

rdf:ID="Wine">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#madeFromGrape"/>
<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">

1
</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>

...
</owl:Class>


 

The blue part defines an anonymous class comprising all objects which have 
property madeFromGrape



 

The definition of class Wine says that the individuals which are Wine are 
also members of this anonymous class



 

Every Wine individual must participate in at least one madeFromGrape 
relation

Wine    ≥1 madeFromGrape
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Combining logical operators

<owl:Class

 

rdf:ID="WhiteBurgundy">
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class

 

rdf:about="#Burgundy"/>
<owl:Class

 

rdf:about="#WhiteWine"/>
</owl:intersectionOf>
</owl:Class>

<owl:Class

 

rdf:ID="WhiteWine">
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class

 

rdf:about="#Wine"/>
<owl:Restriction>

<owl:onProperty

 

rdf:resource="#hasColor"/>
<owl:hasValue

 

rdf:resource="#White"/>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>
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Combining logical operators

<owl:Class

 

rdf:ID="Fruit">
<owl:unionOf rdf:parseType="Collection">

<owl:Class

 

rdf:about="#SweetFruit"/>
<owl:Class

 

rdf:about="#NonSweetFruit"/>
</owl:unionOf>

</owl:Class>

Different from:

<owl:Class

 

rdf:ID="Fruit">
<rdfs:subClassOf rdf:resource="#SweetFruit"/>

<rdfs:subClassOf rdf:resource="#NonSweetFruit"/>
</owl:Class>

Fruit

 



 

SweetFruit

 

NonSweetFruit

Fruit

 

SweetFruit

 

NonSweetFruit
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Combining logical operators

<owl:Class

 

rdf:ID="SweetRedFruit">
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class

 

rdf:about="#SweetFruit"/>
<owl:Class

 

rdf:about="#RedFruit"/>
</owl:unionOf>

</owl:Class>

Different from:
<owl:Class

 

rdf:ID="SweetRedFruit">
<rdfs:subClassOf rdf:resource="#SweetFruit"/>
<rdfs:subClassOf rdf:resource="#RedFruit"/>

</owl:Class>

SweetRedFruit

 

SweetFruit

 

RedFruit

SweetRedFruit

 



 

SweetFruit

 

RedFruit
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Combining logical operators
<owl:Class

 

rdf:ID="ConsumableThing"/>

<owl:Class

 

rdf:ID="NonConsumableThing">
<owl:complementOf rdf:resource="#ConsumableThing"/>

</owl:Class>

<owl:Class

 

rdf:ID="NonFrenchWine">
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class

 

rdf:about="#Wine"/>
<owl:Class>

<owl:complementOf>
<owl:Restriction>

<owl:onProperty

 

rdf:resource="#locatedIn"/>
<owl:hasValue

 

rdf:resource="#FrenchRegion"/>
</owl:Restriction>

</owl:complementOf>
</owl:Class>

</owl:intersectionOf>
</owl:Class>
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Enumeration
<owl:Class

 
rdf:ID="WineColor">

<rdfs:subClassOf
 

rdf:resource="#WineDescriptor"/>
<owl:oneOf rdf:parseType="Collection">

<owl:WineColor
 

rdf:about="#White"/>
<owl:WineColor

 
rdf:about="#Rose"/>

<owl:WineColor
 

rdf:about="#Red"/>
</owl:oneOf>

</owl:Class>
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Restrictions

<owl:Class

 

rdf:ID="USACompany">
<rdfs:subClassOf

 

rdf:resource="#Company"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#locatedIn"/>
<owl:hasValue rdf:resource="#USA"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

USACompany

 

Company    locatedIn:USA
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Restrictions

<owl:Class

 

rdf:ID="EuropeanCompany">
<rdfs:subClassOf

 

rdf:resource="#Company"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#locatedIn"/>
<owl:someValuesFrom rdf:resource="#EuropeanCountry"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

EuropeanCompany

 

Company    

 

locatedIn.EuropeanCountry
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Restrictions

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Person"/>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasChild"/>
<owl:allValuesFrom>

<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Doctor"/>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasChild"/>
<owl:someValuesFrom rdf:resource="#Doctor"/>

</owl:Restriction>
</owl:unionOf>

</owl:allValuesFrom>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

Person     

 

hasChild.(Doctor

 



 

hasChild.Doctor)
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3.5 Axioms
IndividualsClasses Properties
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4. Correspondences


 

OWL


 
Manchester syntax


 
DL
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Syntactic correspondences

OWL
intersectionOf
unionOf
complementOf
subClassOf
equivalentClass

Manchester
and
or
not

DL



Constructors
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Semantic correspondences

OWL
intersectionOf
unionOf
complementOf
subClassOf
equivalentClass

Manchester
and
or
not

DL - sem

CI

 
= DI

 
for any 

interpretation

Constructors
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Syntactic correspondences

OWL
someValuesFrom
allValuesFrom
hasValue
minCardinality
cardinality
maxCardinality

Manchester
some
only
value
min
exactly
max

DL


:
≤
=
≥

Restrictions
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Semantic correspondences

Manchester
some
only
value
min
exactly
max

DL sem

Restrictions



Fem 

 

Pers

 

and

 

GenFem

Barb 

 

Pers

 

and

 

not

 

GenFem

Mama 

 

Fem and

 

areCopil

 

some

 

Pers

Tata

 



 

Barb and

 

areCopil

 

some

 

Pers

Parinte

 



 

Tata

 

or

 

Mama

Bunica

 



 

Mama and

 

areCopil

 

some

 

Parinte

MamaCuMultiCopii

 



 

Mama and

 

areCopil

 

min 3 Pers

MamaFaraFiica

 



 

Mama and

 

areCopil

 

only (not Fem)
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5. OWL Example


 
Consider an academic setting where students take courses and 
courses are offered by departments. Further, assume that each 
course is offered by exactly one department. CS is a department,

 
a 

student must take at least one course, and a full-time student must 
take between three and five courses.

<owl:Class
 

rdf:ID="Student"/>
<owl:Class

 
rdf:ID="Course"/>

<owl:Class
 

rdf:ID="Department"/>
<Department rdf:ID="CS"/>

Object Properties: takes, offers, offeredBy
Other classes: CSCourse, FullTimeStudent, CS FullTimeStudent
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takes, offers, offeredBy
<owl:ObjectProperty

 
rdf:ID="takes">

<rdfs:domain
 

rdf:resource="#Student"/>
<rdfs:range

 
rdf:resource="#Course"/>

</owl:ObjectProperty>

<owl:InverseFunctionalProperty
 

rdf:ID="offers">
<rdfs:domain

 
rdf:resource="#Department"/>

<rdfs:range
 

rdf:resource="#Course"/>
</owl:InverseFunctionalProperty>

<owl:ObjectProperty
 

rdf:ID="offeredBy">
<owl:inverseOf

 
rdf:resource="#offers"/>

</owl:ObjectProperty>
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Student
We have captured all constraints except that a student 

must take at least 1 course

<owl:Class
 

rdf:about="Student">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty

 
rdf:resource="#takes"/>

<owl:minCardinality 
rdf:datatype="&xsd;nonNegativeInteger">

1
</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
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FullTimeStudent
<owl:Class

 

rdf:ID="FullTimeStudent">
<owl:IntersectionOf

 

rdf:parseType="Collection">
<rdfs:Class rdf:about="#Student"/>
<owl:Restriction>

<owl:onProperty

 

rdf:resource="#takes"/>
<owl:minCardinality 

rdf:datatype="&xsd;nonNegativeInteger">
3

</owl:minCardinality>
<owl:maxCardinality 

rdf:datatype="&xsd;nonNegativeInteger">
5

</owl:maxCardinality>
</owl:Restriction>

</owl:IntersectionOf>
</owl:Class>
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CSCourse
<owl:Class

 
rdf:ID="CSCourse">

<owl:IntersectionOf
 

rdf:parseType="Collection">
<rdfs:Class rdf:about="#Course"/>
<owl:Restriction>

<owl:onProperty
 

rdf:resource="#offeredBy"/>
<owl:hasValue

 
rdf:resource="#CS"/>     

</owl:Restriction>
</owl:IntersectionOf>

</owl:Class>
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CSFullTimeStudent
<owl:Class

 
rdf:ID="CSFullTimeStudent">

<owl:IntersectionOf
 

rdf:parseType="Collection">
<rdfs:Class rdf:about="#FullTimeStudent"/>
<owl:Restriction>

<owl:onProperty
 

rdf:resource="#takes"/>
<owl:allValuesFrom

 
rdf:resource="#CSCourse"/>    

</owl:Restriction>
</owl:IntersectionOf>

</owl:Class>
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6. Necessary conditions


 
Necessary conditions define the conditions that 
an individual has to fulfill in order to be an 
instance of a concept

Mother subClassOf Fem
 

and hasChild
 

some Pers


 
if maria

 
is an instance of Mother

 
then it is also 

an instance of Fem
 

and has at least one child


 
if ioana

 
is an instance of Fem

 
and has at least 

one child ioana
 

is not recognized as an instance 
of Mother


 
Partially defined Class (concept)



60

Necessary and sufficient conditions


 

Necessary and suficient
 

conditions define the 
conditions that, if an individual fulfills, then 
the individual is an instance of a concept

Mother
 


 

Fem
 

and hasChild
 

some Pers


 
In this case if ioana

 
is an instance of Fem

 
and 

has at least one child then ioana
 

is recognized 
as an instance of Mother


 
Totally defined Class (concept)
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OWA


 

Open World Assumption


 
If something is not known this does not mean it 
is false
Cal    areCalaret.Femeie
Cal    areCalaret.Barbat


 

May have also Copil
 

as areCalaret


 

Closure axiom
 

(to "close" the world)
Cal   areCalaret.(Femeie Barbat)
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7. OWL Dialects


 
OWL DL - the core dialect, includes DL 
primitives; not necessarily (but often practically) 
tractable


 

OWL Lite - adds restrictions to OWL DL to make 
it tractable (card 0 or 1, no disjunction);


 

OWL Full - lifts restrictions to allow other 
interpretations; extremely general; potentially 
intractable (undecidable); included just for fancy 
expressiveness needs
•

 
e.g., in OWL Full a class may be treated as a collection of 
individuals and as an individual in the same time
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Credits


 

Some slides are based on the book

Service-Oriented Computing: Semantics, 
Processes, Agents

 Munindar P. Singh and Michael N. Huhns, 
Wiley, 2005
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