
Knowledge
Representation
and Reasoning

University "Politehnica" of
Bucharest

Department of Computer
Science

Fall 2012

Adina Magda Florea

Master of Science in Artificial Intelligence, 2012-2014

2

Lecture 9

KR for the Semantic Web

Lecture outline


The Semantic Web



RDF


OWL



Correspondences


OWL Example



Conditions


OWL Dialects

3

1. The Semantic Web


Web was “invented” by Tim Berners-Lee (amongst others),
a physicist working at CERN



TBL’s original vision of the Web was much more ambitious
than the reality of the existing (syntactic) Web



TBL (and others) have since been working towards
realising this vision, which has become known as the
Semantic Web
• E.g., article in May 2001 issue of Scientific American…

“... a goal of the Web was that, if the interaction between person and
hypertext could be so intuitive that the machine-readable information
space gave an accurate representation of the state of people's
thoughts, interactions, and work patterns, then machine analysis could
become a very powerful management tool, seeing patterns in our work
and facilitating our working together through the typical problems which
beset the management of large organizations.”

http://www.w3.org/People/Berners-Lee/

4

Scientific American, May 2001

5

Beware of the Hype



A hype cycle is a graphic representation of the maturity,
adoption and business application of a specific
technology.



Since 1995, Gartner has used hype cycles to
characterize the over-enthusiasm or "hype" and
subsequent disappointment that typically happens with
the introduction of new technologies

6

Beware of the Hype

Images from Christine Thompson and David Booth



Hype seems to suggest that Semantic
Web means: “semantics + web = AI”
• “A new form of Web content that is

meaningful to computers will unleash
a revolution of new abilities”



More realistic to think of it as meaning:
“semantics + web + AI = more useful
web”
• Realising the complete “vision” is too

hard for now (probably)
• But we can make a start by adding

semantic annotation to web
resources

7

Today: the Syntactic Web


A hypermedia, a digital library
• A library of documents called (web pages) interconnected

by a hypermedia of links


A database, an application platform
• A common portal to applications accessible through web

pages, and presenting their results as web pages


A platform for multimedia
• e.g., BBC Radio anywhere in the world



A naming scheme
• Unique identity for those documents

A place where computers do the presentation (easy) and
people do the linking and interpreting (hard).

8

Impossible (?) using the Syntactic Web



Complex queries involving background knowledge
• Find information about “animals that use sonar but are

not either bats or dolphins”


Locating information in data repositories
• Travel enquiries
• Prices of goods and services
• Results of human genome experiments



Finding and using web services
• Visualise surface interactions between two proteins



Delegating complex tasks to web agents
• Book me a holiday next weekend somewhere warm, not

too far away, and where they speak French or English

9

What is the Problem?



Make web resources more accessible to
automated processes


Extend existing rendering markup with
semantic markup
• Metadata annotations that describe

content/function of web accessible resources


Use Ontologies to provide vocabulary for
annotations
• Formal specification is accessible to machines

10

Ontology in Philosophy

• Ontology = a philosophical discipline - a
branch of philosophy that deals with the
nature and the organisation of reality



Science of Being (Aristotle, Metaphysics, IV, 1)
"the science of being qua being"



Tries to answer the questions:


What characterizes being?


Eventually, what is being?

11

Ontology in Computer Science


A specification of a conceptualization or a set of
knowledge terms for a particular domain, including

• The vocabulary: concepts and relations

• The semantic interconnections: relationships among
concepts and relations

• Some rules of inference



An ontology describes a formal specification of a
certain domain:

• Shared understanding of a domain of interest

• Formal and machine manipulable model of a domain
of interest

12

The Semantic Web Stack

13

Parenthesis – The Web Services Stack

Schema from Service-Oriented Computing: Semantics, Processes, Agents

– Munindar P. Singh and Michael N. Huhns, Wiley, 2005

14

2. RDF



Provides a basis for knowledge representation


Based on KR ideas (frames) but uses the Web
to enhance interoperability



XML
• Gives a document tree
• Doesn’t identify the content represented by a

document, where content means


Concepts the document is about


Relationships among them

• Enables multiple representations for the same content

15

RDF



RDF captures descriptions of resources


A resource is an “addressable” object
• Of which a description can be given
• Which is identified via a URI (Uniform

Resource Identifier)


A literal is something simpler
• A value, e.g., string or integer
• Cannot be given a description

16

RDF



RDF is based on a simple grammar


An RDF document is just a set of statements or
triples



Each statement consists of
• Subject: a resource
• Object: a resource or a literal
• Predicate: a resource



RDF uses:
• XML serialization
• Standard XML namespace syntax
• Namespaces are defined by the RDF standard



Typically abbreviated rdf and rdfs


Comes with RDFS - a meta-vocabulary

17

RDF
<?xml version='1.0' encoding='UTF-8'?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/">
<rdf:Description rdf:about="http://www.wiley.com/SOC">
<dc:title>Service-Oriented Computing</dc:title>
<dc:creator>Munindar</dc:creator>
<dc:creator>Michael</dc:creator>
<dc:publisher>Wiley</dc:publisher>

</rdf:Description>
</rdf:RDF>

Service-Oriented Computing: Semantics, Processes, Agents

– Munindar P. Singh and Michael N. Huhns, Wiley, 2005

18

RDF Schema



Analogous to an object-oriented type
system built on top of RDF.


RDFS defines:
• rdfs:Class, rdfs:subClassOf
• rdfs:Resource, rdfs:Literal
• rdfs:Property, rdfs:subPropertyOf
• rdfs:range, rdfs:domain
• rdfs:label, rdfs:comment, rdfs:seeAlso



OWL - greatly enhances the above

19

3. OWL



OWL standardizes additional constructs to
be able to capture more meaning
• Builds on RDF, by limiting it
• Gives formal semantics to new terms



Based on description logic


DL Concepts = OWL Classes


DL individuals = OWL Individuals


DL Roles = OWL Properties

20

Picture from Service-Oriented Computing: Semantics, Processes, Agents -

Munindar

Singh and Michael Huhns, Wiley 2005

OWL Entities and Relationships

21

3.1 OWL – Classes



OWL Classes correspond to concepts in DL



owl:Class –

defined as a subclass of rdfs:Class



All OWL classes are members of owl:Class

Owl have some predefined classes:


Predefined class owl:Thing –

top of class hierarchy (T)



Predefined class owl:Nothing –no instances, bottom of hierarchy,
a subclass of any other class ()

22

Classes



Simple examples:
<owl:Class

rdf:ID="Winery"/>

<owl:Class

rdf:ID="Region"/>
<owl:Class

rdf:ID="ConsumableThing"/>



rdf:ID defines the name of the class


Region

may be referred as

• rdf:resource="#Region"



<rdf:about="#Winery"/>

may be used to extend the
class "Winery"

23

Subclasses



Class definitions

<owl:Class

rdf:ID="Winery"/>
<owl:Class

rdf:ID="Region"/>

<owl:Class

rdf:ID="ConsumableThing"/>



A class may have superclasses

<owl:Class

rdf:ID="Mammals">
<rdfs:subClassOf

rdf:resource="#Animals"/>

<rdfs:subClassOf

rdf:resource="#Vertebrate"/>
</owl:Class>

24

Subclasses


Subclasses/Superclasses

define a subsumtion

relation

<owl:Class

rdf:ID="Pasta">
<rdfs:subClassOf

rdf:resource="#ConsumableThing"/>

...
</owl:Class>



DL equivalent

Pasta ConsumableThing


Use
<owl:Class

rdf:about="Pasta">

<rdfs:subClassOf

rdf:resource="#EdibleThing"/>
...

</owl:Class>

Pasta EdibleThing

x Pasta(x) ConsumableThing(x)

25

3.2 Individuals


Describe members of a class



Declare an individual named CentralCoastRegion

as a member of

class Region
<Region rdf:ID="CentralCoastRegion"/>



CentralCoastRegion: Region



This is equivalent to
<owl:Thing

rdf:ID="CentralCoastRegion">

<rdf:type

rdf:resource="#Region"/>
</owl:Thing>



rdf:type

is an RDF property which links an individual to the class

to which belongs

26

Individuals

<Region rdf:ID="SantaCruzRegion">
<locatedIn

rdf:resource="#CaliforniaRegion"/>

</Region>

<Winery rdf:ID="SantaCruzVineyard"/>

<CabernetSauvignon
rdf:ID="SantaCruzVineyardCabernetSauvignon">

<locatedIn

rdf:resource="#SantaCruzRegion"/>
<hasMaker

rdf:resource="#SantaCruzVineyard"/>

</CabernetSauvignon>

<owl:Class

rdf:ID=“CabernetSauvignon">
<rdfs:subClassOf

rdf:resource="#Winery"/>
</owl:Class>

<owl:Class

rdf:ID="Winery"/>
<owl:Class

rdf:ID="Region"/>

27

3.3 Properties


2 types of properties:
•

Object properties (a)


instances of owl:ObjectProperty


relate instances of 2 classes


domain + range = instances of owl:Class ; are owl:Thing
(unless otherwise specified)

•

Data type properties (b)


instances of owl:DatatypeProperty


relate an instance of a class with an instance of a data type


domain is the same ; range = an instance of
rdfs:DataType and is an owl:DataRange

pred(x,y) –

x: inst class
y: inst class

pred(x,y) –

x: inst class
y: inst data type

28

(a) Object properties


A sequence of OWL elements are (implicitly) linked by
conjunctions



Examples of object properties

<owl:ObjectProperty rdf:ID="madeFromGrape">
<rdfs:domain rdf:resource="#Wine"/>
<rdfs:range rdf:resource="#WineGrape"/>

</owl:ObjectProperty>

T madeFromGrape.WineGrape

madeFromGrape.T

Wine

 x madeFromGrape(y,x)  Wine(y) x madeFromGrape(y,x)  WineGrape(x)

29

Properties and sub-properties



rdfs:subPropertyOf


rdfs:domain



rdfs:range


rdfs:equivalentProperty



rdfs:inverseOf

–

only for object properties
<owl:ObjectProperty

rdf:ID="livesIn">

<rdfs:domain

rdf:resource="#Animal"/>
<rdfs:range

rdf:resource="#Location"/>

<rdfs:subPropertyOf

rdf:resource="#hasHabitat"/>
<rdfs:equivalentProperty

rdf:resource="#hasHome"/>

</owl:ObjectProperty>

30

Another example of object properties

<owl:Class

rdf:ID="WineDescriptor"/>
<owl:Class

rdf:ID="WineColor">

<rdfs:subClassOf

rdf:resource="#WineDescriptor"/>
...
</owl:Class>
<owl:ObjectProperty

rdf:ID="hasWineDescriptor">

<rdfs:domain

rdf:resource="#Wine"/>
<rdfs:range

rdf:resource="#WineDescriptor"/>

</owl:ObjectProperty>
<owl:ObjectProperty

rdf:ID="hasColor">

<rdfs:subPropertyOf

rdf:resource="#hasWineDescriptor"/>
<rdfs:domain

rdf:resource="#Wine"/>

<rdfs:range

rdf:resource="#WineColor"/>
</owl:ObjectProperty>

WineColor

WineDescriptor Wine

hasWineDescriptor

hasColor

31

(b) Data type properties


Represent relations between class instances and data types XML
Schema



All OWL engines must support at least the data types:
• xsd:integer

si

xsd:string



Example

<owl:DatatypeProperty

rdf:ID="yearValue">
<rdfs:domain

rdf:resource="#VintageYear"/>

<rdfs:range

rdf:resource="&xsd;positiveInteger"/>
</owl:DatatypeProperty>



yearValue

binds owl:Thing

to positive integer values

32

More on properties


R is Transitive if and only if

xRy and yRz imply xRz



R is Symmetric if and only if

xRy iff yRx



R is Functional if and only if

xRy and xRz implies y = z



R1 and R2 are Inverse Properties if and only if

xR1 y iff yR2 x

33

Examples taken from the Wine Ontology



http://www.w3.org/TR/owl-guide/wine.rdf



http://oaei.ontologymatching.org/tests/102/onto.html

http://www.w3.org/TR/owl-guide/wine.rdf
http://oaei.ontologymatching.org/tests/102/onto.html

34

3.4 Class constructors


How can we build a class?

(a) By specifying a class name
<owl:Class

rdf:ID="WineDescriptor"/>

(b) By specifying a class name + descendancy
<owl:Class

rdf:ID="WineColor">

<rdfs:subClassOf

rdf:resource="#WineDescriptor"/>
</owl:Class>

(c) By using logical operators: owl:IntersectionOf

(),
 owl:unionOf

(),

owl:complementOf

()

or enumeration owl:oneOf

(list all individuals)
Used generally with the data type rdf:parseType='Collection'

(d) Impose restrictions on properties = powerful mechanism

35

Class constructors

36

Restrictions


Allows building classes based on restrictions applied
to properties (d)



The objects that satisfy the restriction on the property
make an anonymous class



owl:Restriction

–

subclass of owl:Class


A restriction may be of 2 types
•

owl:ObjectRestriction

–

applied to an Object Property

•

owl:DataRestriction

–

applied to a Data type Property



The property on which the restriction applies is
specified by owl:onProperty

37

Restrictions
<owl:Class

rdf:ID="Wine">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#madeFromGrape"/>
<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">

1
</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>

...
</owl:Class>


The blue part defines an anonymous class comprising all objects which have
property madeFromGrape



The definition of class Wine says that the individuals which are Wine are
also members of this anonymous class



Every Wine individual must participate in at least one madeFromGrape
relation

Wine ≥1 madeFromGrape

38

Combining logical operators

<owl:Class

rdf:ID="WhiteBurgundy">
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class

rdf:about="#Burgundy"/>
<owl:Class

rdf:about="#WhiteWine"/>
</owl:intersectionOf>
</owl:Class>

<owl:Class

rdf:ID="WhiteWine">
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class

rdf:about="#Wine"/>
<owl:Restriction>

<owl:onProperty

rdf:resource="#hasColor"/>
<owl:hasValue

rdf:resource="#White"/>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

39

Combining logical operators

<owl:Class

rdf:ID="Fruit">
<owl:unionOf rdf:parseType="Collection">

<owl:Class

rdf:about="#SweetFruit"/>
<owl:Class

rdf:about="#NonSweetFruit"/>
</owl:unionOf>

</owl:Class>

Different from:

<owl:Class

rdf:ID="Fruit">
<rdfs:subClassOf rdf:resource="#SweetFruit"/>

<rdfs:subClassOf rdf:resource="#NonSweetFruit"/>
</owl:Class>

Fruit



SweetFruit

NonSweetFruit

Fruit

SweetFruit

NonSweetFruit

40

Combining logical operators

<owl:Class

rdf:ID="SweetRedFruit">
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class

rdf:about="#SweetFruit"/>
<owl:Class

rdf:about="#RedFruit"/>
</owl:unionOf>

</owl:Class>

Different from:
<owl:Class

rdf:ID="SweetRedFruit">
<rdfs:subClassOf rdf:resource="#SweetFruit"/>
<rdfs:subClassOf rdf:resource="#RedFruit"/>

</owl:Class>

SweetRedFruit

SweetFruit

RedFruit

SweetRedFruit



SweetFruit

RedFruit

41

Combining logical operators
<owl:Class

rdf:ID="ConsumableThing"/>

<owl:Class

rdf:ID="NonConsumableThing">
<owl:complementOf rdf:resource="#ConsumableThing"/>

</owl:Class>

<owl:Class

rdf:ID="NonFrenchWine">
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class

rdf:about="#Wine"/>
<owl:Class>

<owl:complementOf>
<owl:Restriction>

<owl:onProperty

rdf:resource="#locatedIn"/>
<owl:hasValue

rdf:resource="#FrenchRegion"/>
</owl:Restriction>

</owl:complementOf>
</owl:Class>

</owl:intersectionOf>
</owl:Class>

42

Enumeration
<owl:Class

rdf:ID="WineColor">

<rdfs:subClassOf

rdf:resource="#WineDescriptor"/>
<owl:oneOf rdf:parseType="Collection">

<owl:WineColor

rdf:about="#White"/>
<owl:WineColor

rdf:about="#Rose"/>

<owl:WineColor

rdf:about="#Red"/>
</owl:oneOf>

</owl:Class>

43

Restrictions

<owl:Class

rdf:ID="USACompany">
<rdfs:subClassOf

rdf:resource="#Company"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#locatedIn"/>
<owl:hasValue rdf:resource="#USA"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

USACompany

Company locatedIn:USA

44

Restrictions

<owl:Class

rdf:ID="EuropeanCompany">
<rdfs:subClassOf

rdf:resource="#Company"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#locatedIn"/>
<owl:someValuesFrom rdf:resource="#EuropeanCountry"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

EuropeanCompany

Company 

locatedIn.EuropeanCountry

45

Restrictions

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Person"/>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasChild"/>
<owl:allValuesFrom>

<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Doctor"/>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasChild"/>
<owl:someValuesFrom rdf:resource="#Doctor"/>

</owl:Restriction>
</owl:unionOf>

</owl:allValuesFrom>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

Person 

hasChild.(Doctor



hasChild.Doctor)

46

3.5 Axioms
IndividualsClasses Properties

47

4. Correspondences



OWL


Manchester syntax


DL

48

Syntactic correspondences

OWL
intersectionOf
unionOf
complementOf
subClassOf
equivalentClass

Manchester
and
or
not

DL



Constructors

49

Semantic correspondences

OWL
intersectionOf
unionOf
complementOf
subClassOf
equivalentClass

Manchester
and
or
not

DL - sem

CI

= DI

for any

interpretation

Constructors

50

Syntactic correspondences

OWL
someValuesFrom
allValuesFrom
hasValue
minCardinality
cardinality
maxCardinality

Manchester
some
only
value
min
exactly
max

DL


:
≤
=
≥

Restrictions

51

Semantic correspondences

Manchester
some
only
value
min
exactly
max

DL sem

Restrictions

Fem 

Pers

and

GenFem

Barb 

Pers

and

not

GenFem

Mama 

Fem and

areCopil

some

Pers

Tata



Barb and

areCopil

some

Pers

Parinte



Tata

or

Mama

Bunica



Mama and

areCopil

some

Parinte

MamaCuMultiCopii



Mama and

areCopil

min 3 Pers

MamaFaraFiica



Mama and

areCopil

only (not Fem)

53

5. OWL Example


Consider an academic setting where students take courses and
courses are offered by departments. Further, assume that each
course is offered by exactly one department. CS is a department,

a

student must take at least one course, and a full-time student must
take between three and five courses.

<owl:Class

rdf:ID="Student"/>
<owl:Class

rdf:ID="Course"/>

<owl:Class

rdf:ID="Department"/>
<Department rdf:ID="CS"/>

Object Properties: takes, offers, offeredBy
Other classes: CSCourse, FullTimeStudent, CS FullTimeStudent

54

takes, offers, offeredBy
<owl:ObjectProperty

rdf:ID="takes">

<rdfs:domain

rdf:resource="#Student"/>
<rdfs:range

rdf:resource="#Course"/>

</owl:ObjectProperty>

<owl:InverseFunctionalProperty

rdf:ID="offers">
<rdfs:domain

rdf:resource="#Department"/>

<rdfs:range

rdf:resource="#Course"/>
</owl:InverseFunctionalProperty>

<owl:ObjectProperty

rdf:ID="offeredBy">
<owl:inverseOf

rdf:resource="#offers"/>

</owl:ObjectProperty>

55

Student
We have captured all constraints except that a student

must take at least 1 course

<owl:Class

rdf:about="Student">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty

rdf:resource="#takes"/>

<owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">

1
</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

56

FullTimeStudent
<owl:Class

rdf:ID="FullTimeStudent">
<owl:IntersectionOf

rdf:parseType="Collection">
<rdfs:Class rdf:about="#Student"/>
<owl:Restriction>

<owl:onProperty

rdf:resource="#takes"/>
<owl:minCardinality

rdf:datatype="&xsd;nonNegativeInteger">
3

</owl:minCardinality>
<owl:maxCardinality

rdf:datatype="&xsd;nonNegativeInteger">
5

</owl:maxCardinality>
</owl:Restriction>

</owl:IntersectionOf>
</owl:Class>

57

CSCourse
<owl:Class

rdf:ID="CSCourse">

<owl:IntersectionOf

rdf:parseType="Collection">
<rdfs:Class rdf:about="#Course"/>
<owl:Restriction>

<owl:onProperty

rdf:resource="#offeredBy"/>
<owl:hasValue

rdf:resource="#CS"/>

</owl:Restriction>
</owl:IntersectionOf>

</owl:Class>

58

CSFullTimeStudent
<owl:Class

rdf:ID="CSFullTimeStudent">

<owl:IntersectionOf

rdf:parseType="Collection">
<rdfs:Class rdf:about="#FullTimeStudent"/>
<owl:Restriction>

<owl:onProperty

rdf:resource="#takes"/>
<owl:allValuesFrom

rdf:resource="#CSCourse"/>

</owl:Restriction>
</owl:IntersectionOf>

</owl:Class>

59

6. Necessary conditions


Necessary conditions define the conditions that
an individual has to fulfill in order to be an
instance of a concept

Mother subClassOf Fem

and hasChild

some Pers


if maria

is an instance of Mother

then it is also

an instance of Fem

and has at least one child


if ioana

is an instance of Fem

and has at least

one child ioana

is not recognized as an instance
of Mother


Partially defined Class (concept)

60

Necessary and sufficient conditions



Necessary and suficient

conditions define the
conditions that, if an individual fulfills, then
the individual is an instance of a concept

Mother



Fem

and hasChild

some Pers


In this case if ioana

is an instance of Fem

and

has at least one child then ioana

is recognized
as an instance of Mother


Totally defined Class (concept)

61

OWA



Open World Assumption


If something is not known this does not mean it
is false
Cal areCalaret.Femeie
Cal areCalaret.Barbat



May have also Copil

as areCalaret



Closure axiom

(to "close" the world)
Cal areCalaret.(Femeie Barbat)

62

7. OWL Dialects


OWL DL - the core dialect, includes DL
primitives; not necessarily (but often practically)
tractable



OWL Lite - adds restrictions to OWL DL to make
it tractable (card 0 or 1, no disjunction);



OWL Full - lifts restrictions to allow other
interpretations; extremely general; potentially
intractable (undecidable); included just for fancy
expressiveness needs
•

e.g., in OWL Full a class may be treated as a collection of
individuals and as an individual in the same time

63

Credits



Some slides are based on the book

Service-Oriented Computing: Semantics,
Processes, Agents

 Munindar P. Singh and Michael N. Huhns,
Wiley, 2005

	Knowledge Representation and Reasoning
	Lecture 9
	1. The Semantic Web
	Slide Number 4
	Beware of the Hype
	Beware of the Hype
	Today: the Syntactic Web
	Impossible (?) using the Syntactic Web
	What is the Problem?
	Ontology in Philosophy
	Ontology in Computer Science
	The Semantic Web Stack
	Parenthesis – The Web Services Stack
	2. RDF
	RDF
	RDF
	RDF
	RDF Schema
	3. OWL
	OWL Entities and Relationships
	3.1 OWL – Classes
	Classes
	Subclasses
	Subclasses
	3.2 Individuals
	Individuals
	3.3 Properties
	(a) Object properties
	Properties and sub-properties
	Another example of object properties
	(b) Data type properties
	More on properties
	Examples taken from the Wine Ontology
	3.4 Class constructors
	Class constructors
	Restrictions
	Restrictions
	Combining logical operators
	Combining logical operators
	Combining logical operators
	Combining logical operators
	Enumeration
	Restrictions
	Restrictions
	Restrictions
	3.5 Axioms
	4. Correspondences
	Syntactic correspondences
	Semantic correspondences
	Syntactic correspondences
	Semantic correspondences
	Slide Number 52
	5. OWL Example
	takes, offers, offeredBy
	Student
	FullTimeStudent
	CSCourse
	CSFullTimeStudent
	6. Necessary conditions
	Necessary and sufficient conditions
	OWA
	7. OWL Dialects
	Credits

