i Lecture No. 2

Knowledge representation in Al

= Simbolic logic representation
= Formal system

= Propositional logic

= Predicate logic

= Theorem proving




i 1. Knowledge representation

= Why Symbolic logic
= Power of representation
= Formal language: syntax, semantics

= Conceptualization + representation In a
language
= Inference rules



i 2. Formal systems

= O formal system is a quadruple S=<A,F,A R >

= Arule of inference R e% of arity n is an association:

RcF"xF, §/:<y1,...,yn>i>x, X,yi €eF, Vi=1n

= Immediate consequence
= Bethe set of premises T ={y,,...,y,} Eo=TUA
E,=E, U{X3y €E}, yRXx} E,=E; U{x]3y eE}, y R x}
n>1 n>1
= Anelement E; (i>0)
IS an immediate conseguence of a set of premises I




i Formal systems - cont

= If Ej=A ('=¢) then the elements of E; are called
theorems

= Be xeE; a theorem; it can be obtained by successive
applications of I.r on the formulas in E;

= Sequence of rules - demonstration . |— X | 7 X

s If Eg=TUA then  x eE; can be deduced from I
['—X




i 3. Propositional logic

= Formal language
s 3.1 Syntax
= Alphabet

= A well-formed formula (wff) in propositional logic is:

(1) An atom is a wff

(2) If P is a wff, then ~P Is a wff.

(3) If P and Q are wffs then PAQ, PvQ, P—Q si P<~>Q are wffs.

(4) The set of all wffs can be generated by repeatedly applying rules
(1)..(3).




i 3.2 Semantics

= Interpretation
= Evaluation function of a formula
= Properties of wffs

= Valid / tautulogy

= Satisfiable

= Contradiction

= Equivalent formulas



i Semantics - cont

A formula F iIs a logical consequence of a formula
P

A formula F is a logical consequence of a set of
formulas P,,...P,

Notation of logical consequence P,,...P, =F.

Theorem.Formula F is a logical consequence of a

set of formulas P,,...P, if the formula P,,...P, —>F
Is valid.

Teorema. Formula F iIs a logical consequence of a
set of formulas P,,...P, If the formula P A... A P,
A ~F Is a contradiction.



Equivalence rules

Idempotenta

PvP=P

PAP=P

Asociativitate

(PvQ)vR=PVv(QVR)

(PAQ)AR=PA(QAR)

Comutativitate PvQ=QvVvP PAQ=QAP P&>Q=Q«P
Distributivitate | PA(QVR)=(PAQ)V(PAR)|IPV(QAR)=(PVvQ)A(PVR)

De Morgan ~(PvQ)=~PA~Q ~(PAQ)=~Pv~Q

Eliminarea .

implicatiei P>Q=-PvQ
Eliminarea

implicatiei duble

P-Q=(P->Q)A(Q—P)




i 3.3 Obtaining new knowledge

= Conceptualization
= Reprezentation in a formal language
= Model theory

KB ||—x M
= Proof theory
KB |—x M

= Monotonic logics
= Non-monotonic logics



i 3.4 Inference rules
P

= Modus Ponens P—Q

o Q
= Substitution
. P—Q
= Chain rule Q>R
P—>R
= AND Introduction 5
PAQ
= Transposition P—Q




i Example

= Mihai has money
= [he car IS white
= The car IS nice

= |f the car I1s white or the car Is nice and Mihal
has money then Mihal goes to the mountain

= B
m A
m F
s (AVF)AB—>C



$4. First order predicate logic

4.1 Syntax

Be D a domalin of values. A term is defined as:

= (1) A constant i1s a term with a fixed value
belonging to D.

= (2) A variable Is a term which may take values in
D.

= (3) If fis a function of n arguments and t;,..t, are
terms then f(t;,..t,) Is a term.

= (4) All terms are generated by the application of
rules (1)...(3).



i Syntax PL - cont

= Predicates of arity n
= Atom or atomic formula.
= Literal

A well formed formula (wff) in first order predicate logic is
defined as:

(1)  Aatom is an wff
(2) If P[x] is a wff then ~P[x] is an wiff.
(3) If P[x] and Q [x] are wffs then P[X]AQI[X],
P[x] vQI[Xx], P—>Q and P<~>Q are wffs.
(4) If P[x] is an wff then VX P[x], 3x P[x] are wffs.

(5) The set of all wffs can be generated by repeatedly
applying rules (1)..(4).




Syntax - schematically

Constante  Variabile Functii
a X f(x, a)

\V

Termeni Predicate
P

\/

Formule atomice negate Formule atomice
~P(a, x) P(a, X)

Cuantificatori Literali Conectori logici
1,¥ ~ AV, D, 4>

\I/

Formule bine formate



i CNE. DNF

= Conjunctive normal form (CNF)
Fin... AF
F,1=1,n
(Li; v ... vLi,).

= Disjunctive normal form (DNF)

n?

Fiv...VvF
F,1=1,n
(LiyA... ALj)

n?



i 4.2 Semantics of PL

= The Interpretation of a formula F in first order
predicate logic consists of fixing a domain of
values (non empty) D and of an association of
values for every constant, function and predicate
In the formula F as follows:

= (1) Every constant has an associated value in D.

= (2) Every function f, of arity n, iIs defined by the
correspondence D" — D where

D" ={(Xq,...,X,)|X; €D,...,x,, €D}

= (3) Every predicate of arity n, is defined by the
correspondence p.pn _, g3 £}



Interpretation - example

(VX)(((A(a,x) v B(T(x))) A C(x)) = D(x))

D={1,2}

f(1) | f(2) A2D) | A(2,2) | B | B(2) | CQDH | C(2) | DD | D(2)
2 1 a f a f a f f a
x=1 ((avf)ra)—f

X=2 ((fva)af)—>a




i 4.3 Properties of wffs in PL

= Valid / tautulogy
« Satisfiable
= Contradiction
= Equivalent formulas
= A formula F is a logical consequence of a formula P

= A formula F is a logical consequence of a set of formulas
P.,...P,
= Notation of logical consequence P,...P, =F.

= Theorem. Formula F is a logical consequence of a set of
formulas P,...P,, If the formula P,,...P, —F is valid.

= Teorema. Formula F is a logical consequence of a set of
formulas P,,...P, If the formula P,A... A P, A ~F Is a
contradiction.



Equivalence of quantifiers

(QX)F[x]v G = (Qx)(F[X] v G) (Q)F[X]A G = (QX)(FIX] A G)
~ ((VX)F[x]) = (3x)(~ Fx]) ~ ((3X)FIx]) = (VX)(~ F[x])
(VX)FIXIA (VX)H[X] = (VX)(F[X] A H[X]) (Ix)FX] v (Ix)H[X] = (3X)(F[x] v H[X])
(Qux)FIX] A (Qx)HIx] = (Qx)(Q22) (FIX] A H[z]) | (QX) FIX] v (Q2x) HIX] = (Q1x)(Q22) (F[X] v H[z])




i Examples

= All apples are red

= All objects are red apples
= Thereis aredapple

= All packages in room 27 are smaller than any package in
room 28

= All purple mushrooms are poisonous

= VX (Purple(x) A Mushroom(x)) = Poisonous(x)

= VX Purple(x) = (Mushroom(x) = Poisonous(X))
= VX Mushroom (x) = (Purple (X) = Poisonous(x))

(VX)(3y) loves(x,y)
(Ay)(¥x)loves(x,y)



i 4.4. Inference rules in PL

= Modus Ponens PO 000)
Q(a)

" Substitution

. Chaining

- Transpozition

i AND elimination (AE)

- AND introduction (Al)

- Universal instantiation (Ul)

m Existential instantiation (El)

0 Rezolution






Example

Horses are faster than dogs and there is a greyhound that is faster than
every rabbit. We know that Harry is a horse and that Ralph is a rabbit.
Derive that Harry is faster than Ralph.

Horse(x) Greyhound(y)
Dog(y) Rabbit(z)
Faster(y,z))

Vx Yy Horse(x) A Dog(y) = Faster(x,y)
dy Greyhound(y) A (Vz Rabbit(z) = Faster(y,z))

Horse(Harry)

Rabbit(Ralph)

vy Greyhound(y) = Dog(y)

VX Vy Vz Faster(x,y) A Faster(y,z) = Faster(x,z)



Proof example

Theorem: Faster(Harry, Ralph) ?

Proof using inference rules

VX Vy Horse(x) A Dog(y) = Faster(X,y)

3y Greyhound(y) A (Vz Rabbit(z) = Faster(y,z))
vy Greyhound(y) = Dog(y)

VXxVyVz Faster(x,y) A Faster(y,z) = Faster(x,z)
Horse(Harry)

Rabbit(Ralph)

Greyhound(Greg) A (Vz Rabbit(z) = Faster(Greg,z))
Greyhound(Greg)
Vz Rabbit(z) = Faster(Greg,z))

2, El
7, AE
7, AE



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Proof example - cont

Rabbit(Ralph) = Faster(Greg,Ralph) 9, Ul
Faster(Greg,Ralph) 6,10, MP
Greyhound(Greg) = Dog(Greg) 3, Ul
Dog(Greq) 12,8, MP

Horse(Harry) A Dog(Greg) = Faster(Harry, Greg) 1, Ul
Horse(Harry) A Dog(Greg) 5,13, Al
Faster(Harry, GreQ) 14, 15, MP
Faster(Harry, Greg) A Faster(Greg, Ralph) = Faster(Harry,Ralph)
4, Ul
Faster(Harry, Greg) A Faster(Greg, Ralph) 16, 11, Al
Faster(Harry,Ralph) 17,19, MP
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