
Part VII
Data Protection

Part VII describes how Oracle protects the data in a database and explains what the
database administrator can do to provide additional protection for data.

Part VII contains the following chapters:

Chapter 20, "Data Concurrency and Consistency"

Chapter 21, "Data Integrity"

Chapter 22, "Controlling Database Access"

Chapter 23, "Privileges, Roles, and Security Policies"

Chapter 24, "Auditing"



Oracle9i Database Concepts



20
Data Concurrency and Consistency

This chapter explains how Oracle maintains consistent data in a multiuser database
environment. The chapter includes:

Introduction to Data Concurrency and Consistency in a Multiuser Environment

How Oracle Manages Data Concurrency and Consistency

How Oracle Locks Data

Flashback Query

Data Concurrency and Consistency 20-1



Introduction to Data Concurrency and Consistency in a Multiuser Environment

Introduction to Data Concurrency and Consistency in a Multiuser
Environment

In a single-user database, the user can modify data in the database without concern
for other users modifying the same data at the same time. However, in a multiuser
database, the statements within multiple simultaneous transactions can update the
same data. Transactions executing at the same time need to produce meaningful
and consistent results. Therefore, control of data concurrency and data consistency
is vital in a multiuser database.

Data concurrency means that many users can access data at the same time.

Data consistency means that each user sees a consistent view of the data,
including visible changes made by the user ’s own transactions and transactions
of other users.

To describe consistent transaction behavior when transactions execute at the same
time, database researchers have defined a transaction isolation model called
serializability. The serializable mode of transaction behavior tries to ensure that
transactions execute in such a way that they appear to be executed one at a time, or
serially, rather than concurrently.

While this degree of isolation between transactions is generally desirable, running
many applications in this mode can seriously compromise application throughput.
Complete isolation of concurrently running transactions could mean that one
transaction cannot perform an insert into a table being queried by another
transaction. In short, real-world considerations usually require a compromise
between perfect transaction isolation and performance.

Oracle offers two isolation levels, providing application developers with
operational modes that preserve consistency and provide high performance.

See Also: Chapter 21, "Data Integrity" for information about data
integrity, which enforces business rules associated with a database

Preventable Phenomena and Transaction Isolation Levels
The ANSI/ISO SQL standard (SQL92) defines four levels of transaction isolation
with differing degrees of impact on transaction processing throughput. These
isolation levels are defined in terms of three phenomena that must be prevented
between concurrently executing transactions.

20-2 Oracle9i Database Concepts



Introduction to Data Concurrency and Consistency in a Multiuser Environment

The three preventable phenomena are:

Dirty reads: A transaction reads data that has been written by another
transaction that has not been committed yet.

Nonrepeatable (fuzzy) reads: A transaction rereads data it has previously read
and finds that another committed transaction has modified or deleted the data.

Phantom reads: A transaction re-executes a query returning a set of rows that
satisfies a search condition and finds that another committed transaction has
inserted additional rows that satisfy the condition.

SQL92 defines four levels of isolation in terms of the phenomena a transaction
running at a particular isolation level is permitted to experience. They are shown in
Table 20– 1:

Table 20– 1 Preventable Read Phenomena by Isolation Level

Isolation Level Dirty Read Nonrepeatable Read Phantom Read

Read uncommitted Possible Possible Possible

Read committed Not possible Possible Possible

Repeatable read Not possible Not possible Possible

Serializable Not possible Not possible Not possible

Oracle offers the read committed and serializable isolation levels, as well as a
read-only mode that is not part of SQL92. Read committed is the default.

See Also: "How Oracle Manages Data Concurrency and
Consistency" on page 20-4 for a full discussion of read committed
and serializable isolation levels

Overview of Locking Mechanisms
In general, multiuser databases use some form of data locking to solve the problems
associated with data concurrency, consistency, and integrity. Locks are mechanisms
that prevent destructive interaction between transactions accessing the same
resource.

Data Concurrency and Consistency 20-3



How Oracle Manages Data Concurrency and Consistency

Resources include two general types of objects:

User objects, such as tables and rows (structures and data)

System objects not visible to users, such as shared data structures in the
memory and data dictionary rows

See Also: "How Oracle Locks Data" on page 20-17 for more
information about locks

How Oracle Manages Data Concurrency and Consistency
Oracle maintains data consistency in a multiuser environment by using a
multiversion consistency model and various types of locks and transactions. The
following topics are discussed in this section:

Multiversion Concurrency Control

Statement-Level Read Consistency

Transaction-Level Read Consistency

Read Consistency with Real Application Clusters

Oracle Isolation Levels

Comparison of Read Committed and Serializable Isolation

Choice of Isolation Level

Multiversion Concurrency Control
Oracle automatically provides read consistency to a query so that all the data that
the query sees comes from a single point in time (statement-level read consistency).
Oracle can also provide read consistency to all of the queries in a transaction
(transaction-level read consistency).

Oracle uses the information maintained in its rollback segments to provide these
consistent views. The rollback segments contain the old values of data that have
been changed by uncommitted or recently committed transactions. Figure 20– 1
shows how Oracle provides statement-level read consistency using data in rollback
segments.

20-4 Oracle9i Database Concepts



How Oracle Manages Data Concurrency and Consistency

Figure 20– 1 Transactions and Read Consistency

SELECT . . . 
(SCN 10023) 

10021

10021

10024

10008

10024

10011

10021

10008

10021

Data Blocks 

Scan Path 

Rollback Segment 

As a query enters the execution stage, the current system change number (SCN) is
determined. In Figure 20– 1, this system change number is 10023. As data blocks are
read on behalf of the query, only blocks written with the observed SCN are used.
Blocks with changed data (more recent SCNs) are reconstructed from data in the
rollback segments, and the reconstructed data is returned for the query. Therefore,
each query returns all committed data with respect to the SCN recorded at the time
that query execution began. Changes of other transactions that occur during a
query’s execution are not observed, guaranteeing that consistent data is returned for
each query.

Statement-Level Read Consistency
Oracle always enforces statement-level read consistency. This guarantees that all
the data returned by a single query comes from a single point in time— the time that
the query began. Therefore, a query never sees dirty data nor any of the changes
made by transactions that commit during query execution. As query execution

Data Concurrency and Consistency 20-5



How Oracle Manages Data Concurrency and Consistency

proceeds, only data committed before the query began is visible to the query. The
query does not see changes committed after statement execution begins.

A consistent result set is provided for every query, guaranteeing data consistency,
with no action on the user’s part. The SQL statements SELECT, INSERT with a
subquery, UPDATE, and DELETE all query data, either explicitly or implicitly, and all
return consistent data. Each of these statements uses a query to determine which
data it will affect (SELECT, INSERT, UPDATE, or DELETE, respectively).

A SELECT statement is an explicit query and can have nested queries or a join
operation. An INSERT statement can use nested queries. UPDATE and DELETE
statements can use WHERE clauses or subqueries to affect only some rows in a table
rather than all rows.

Queries used in INSERT, UPDATE, and DELETE statements are guaranteed a
consistent set of results. However, they do not see the changes made by the DML
statement itself. In other words, the query in these operations sees data as it existed
before the operation began to make changes.

Transaction-Level Read Consistency
Oracle also offers the option of enforcing transaction-level read consistency. When
a transaction executes in serializable mode, all data accesses reflect the state of the
database as of the time the transaction began. This means that the data seen by all
queries within the same transaction is consistent with respect to a single point in
time, except that queries made by a serializable transaction do see changes made by
the transaction itself. Transaction-level read consistency produces repeatable reads
and does not expose a query to phantoms.

Read Consistency with Real Application Clusters
Real Application Clusters use a cache-to-cache block transfer mechanism known as
Cache Fusion to transfer read-consistent images of blocks from one instance to
another. Real Application Clusters does this using high speed, low latency
interconnects to satisfy remote requests for data blocks.

See Also: Oracle9i Real Application Clusters Concepts for more
information

20-6 Oracle9i Database Concepts



How Oracle Manages Data Concurrency and Consistency

Oracle Isolation Levels
Oracle provides these transaction isolation levels.

Isolation Level Description

Read committed This is the default transaction isolation level. Each
query executed by a transaction sees only data that was
committed before the query (not the transaction)
began. An Oracle query never reads dirty
(uncommitted) data.

Because Oracle does not prevent other transactions
from modifying the data read by a query, that data can
be changed by other transactions between two
executions of the query. Thus, a transaction that
executes a given query twice can experience both
nonrepeatable read and phantoms.

Serializable Serializable transactions see only those changes that
were committed at the time the transaction began, plus
those changes made by the transaction itself through
INSERT, UPDATE, and DELETE statements. Serializable
transactions do not experience nonrepeatable reads or
phantoms.

Read-only Read-only transactions see only those changes that
were committed at the time the transaction began and
do not allow INSERT, UPDATE, and DELETE
statements.

Set the Isolation Level
Application designers, application developers, and database administrators can
choose appropriate isolation levels for different transactions, depending on the
application and workload. You can set the isolation level of a transaction by using
one of these statements at the beginning of a transaction:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

SET TRANSACTION ISOLATION LEVEL READ ONLY;

Data Concurrency and Consistency 20-7



How Oracle Manages Data Concurrency and Consistency

To save the networking and processing cost of beginning each transaction with a
SET TRANSACTION statement, you can use the ALTER SESSION statement to set the
transaction isolation level for all subsequent transactions:

ALTER SESSION SET ISOLATION_LEVEL SERIALIZABLE;

ALTER SESSION SET ISOLATION_LEVEL READ COMMITTED;

See Also: Oracle9i SQL Reference for detailed information on any
of these SQL statements

Read Committed Isolation
The default isolation level for Oracle is read committed. This degree of isolation is
appropriate for environments where few transactions are likely to conflict. Oracle
causes each query to execute with respect to its own materialized view time,
thereby permitting nonrepeatable reads and phantoms for multiple executions of a
query, but providing higher potential throughput. Read committed isolation is the
appropriate level of isolation for environments where few transactions are likely to
conflict.

Serializable Isolation
Serializable isolation is suitable for environments:

With large databases and short transactions that update only a few rows

Where the chance that two concurrent transactions will modify the same rows is
relatively low

Where relatively long-running transactions are primarily read-only

Serializable isolation permits concurrent transactions to make only those database
changes they could have made if the transactions had been scheduled to execute
one after another. Specifically, Oracle permits a serializable transaction to modify a
data row only if it can determine that prior changes to the row were made by
transactions that had committed when the serializable transaction began.

To make this determination efficiently, Oracle uses control information stored in the
data block that indicates which rows in the block contain committed and
uncommitted changes. In a sense, the block contains a recent history of transactions
that affected each row in the block. The amount of history that is retained is
controlled by the INITRANS parameter of CREATE TABLE and ALTER TABLE.

20-8 Oracle9i Database Concepts



How Oracle Manages Data Concurrency and Consistency

Under some circumstances, Oracle can have insufficient history information to
determine whether a row has been updated by a "too recent" transaction. This can
occur when many transactions concurrently modify the same data block, or do so in
a very short period. You can avoid this situation by setting higher values of
INITRANS for tables that will experience many transactions updating the same
blocks. Doing so enables Oracle to allocate sufficient storage in each block to record
the history of recent transactions that accessed the block.

Oracle generates an error when a serializable transaction tries to update or delete
data modified by a transaction that commits after the serializable transaction began:

ORA-08177: Cannot serialize access for this transaction

When a serializable transaction fails with the "Cannot serialize access" error, the
application can take any of several actions:

Commit the work executed to that point

Execute additional (but different) statements (perhaps after rolling back to a
savepoint established earlier in the transaction)

Roll back the entire transaction

Figure 20– 2 shows an example of an application that rolls back and retries the
transaction after it fails with the "Cannot serialize access" error:

Data Concurrency and Consistency 20-9



How Oracle Manages Data Concurrency and Consistency

Figure 20– 2 Serializable Transaction Failure

SET TRANSACTION ISOLATION
LEVEL SERIALIZABLERepeated query sees the same 

data, even if it was changed by 
another concurrent user 

Fails if attempting to update a 
row changed and committed by 
another transaction since this 
transaction began 

SELECT...

SELECT...

UPDATE...

IF ”Can’t Serialize Access”

THEN ROLLBACK;
LOOP and retry

Comparison of Read Committed and Serializable Isolation
Oracle gives the application developer a choice of two transaction isolation levels
with different characteristics. Both the read committed and serializable isolation
levels provide a high degree of consistency and concurrency. Both levels provide the
contention-reducing benefits of Oracle’s read consistency multiversion concurrency
control model and exclusive row-level locking implementation and are designed for
real-world application deployment.

Transaction Set Consistency
A useful way to view the read committed and serializable isolation levels in Oracle
is to consider the following scenario: Assume you have a collection of database
tables (or any set of data), a particular sequence of reads of rows in those tables, and
the set of transactions committed at any particular time. An operation (a query or
a transaction) is transaction set consistent if all its reads return data written by the
same set of committed transactions. An operation is not transaction set consistent if
some reads reflect the changes of one set of transactions and other reads reflect
changes made by other transactions. An operation that is not transaction set
consistent in effect sees the database in a state that reflects no single set of
committed transactions.

20-10 Oracle9i Database Concepts



How Oracle Manages Data Concurrency and Consistency

Oracle provides transactions executing in read committed mode with transaction
set consistency for each statement. Serializable mode provides transaction set
consistency for each transaction.

Table 20– 2 summarizes key differences between read committed and serializable
transactions in Oracle.

Table 20– 2 Read Committed and Serializable Transactions

Read Committed Serializable

Dirty write Not possible Not possible

Dirty read Not possible Not possible

Nonrepeatable read Possible Not possible

Phantoms Possible Not possible

Compliant with ANSI/ISO SQL 92 Yes Yes

Read materialized view time Statement Transaction

Transaction set consistency Statement level Transaction level

Row-level locking Yes Yes

Readers block writers No No

Writers block readers No No

Different-row writers block writers No No

Same-row writers block writers Yes Yes

Waits for blocking transaction Yes Yes

Subject to "cannot serialize access" No Yes

Error after blocking transaction terminatess No No

Error after blocking transaction commits No Yes

Row-Level Locking
Both read committed and serializable transactions use row-level locking, and both
will wait if they try to change a row updated by an uncommitted concurrent
transaction. The second transaction that tries to update a given row waits for the
other transaction to commit or roll back and release its lock. If that other transaction
rolls back, the waiting transaction, regardless of its isolation mode, can proceed to
change the previously locked row as if the other transaction had not existed.

Data Concurrency and Consistency 20-11



How Oracle Manages Data Concurrency and Consistency

However, if the other blocking transaction commits and releases its locks, a read
committed transaction proceeds with its intended update. A serializable
transaction, however, fails with the error "Cannot serialize access", because the
other transaction has committed a change that was made since the serializable
transaction began.

Referential Integrity
Because Oracle does not use read locks in either read-consistent or serializable
transactions, data read by one transaction can be overwritten by another.
Transactions that perform database consistency checks at the application level
cannot assume that the data they read will remain unchanged during the execution
of the transaction even though such changes are not visible to the transaction.
Database inconsistencies can result unless such application-level consistency checks
are coded with this in mind, even when using serializable transactions.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
more information about referential integrity and serializable
transactions

Note: You can use both read committed and serializable
transaction isolation levels with Real Application Clusters.

Distributed Transactions
In a distributed database environment, a given transaction updates data in multiple
physical databases protected by two-phase commit to ensure all nodes or none
commit. In such an environment, all servers, whether Oracle or non-Oracle, that
participate in a serializable transaction are required to support serializable isolation
mode.

If a serializable transaction tries to update data in a database managed by a server
that does not support serializable transactions, the transaction receives an error. The
transaction can roll back and retry only when the remote server does support
serializable transactions.

In contrast, read committed transactions can perform distributed transactions with
servers that do not support serializable transactions.

See Also: Oracle9i Database Administrator’s Guide

20-12 Oracle9i Database Concepts



How Oracle Manages Data Concurrency and Consistency

Choice of Isolation Level
Application designers and developers should choose an isolation level based on
application performance and consistency needs as well as application coding
requirements.

For environments with many concurrent users rapidly submitting transactions,
designers must assess transaction performance requirements in terms of the
expected transaction arrival rate and response time demands. Frequently, for
high-performance environments, the choice of isolation levels involves a trade-off
between consistency and concurrency.

Application logic that checks database consistency must take into account the fact
that reads do not block writes in either mode.

Oracle isolation modes provide high levels of consistency, concurrency, and
performance through the combination of row-level locking and Oracle’s
multiversion concurrency control system. Readers and writers do not block one
another in Oracle. Therefore, while queries still see consistent data, both read
committed and serializable isolation provide a high level of concurrency for high
performance, without the need for reading uncommitted ("dirty") data.

Read Committed Isolation
For many applications, read committed is the most appropriate isolation level. Read
committed isolation can provide considerably more concurrency with a somewhat
increased risk of inconsistent results due to phantoms and non-repeatable reads for
some transactions.

Many high-performance environments with high transaction arrival rates require
more throughput and faster response times than can be achieved with serializable
isolation. Other environments that supports users with a very low transaction
arrival rate also face very low risk of incorrect results due to phantoms and
nonrepeatable reads. Read committed isolation is suitable for both of these
environments.

Oracle read committed isolation provides transaction set consistency for every
query. That is, every query sees data in a consistent state. Therefore, read committed
isolation will suffice for many applications that might require a higher degree of
isolation if run on other database management systems that do not use multiversion
concurrency control.

Read committed isolation mode does not require application logic to trap the
"Cannot serialize access" error and loop back to restart a transaction. In most
applications, few transactions have a functional need to issue the same query twice,

Data Concurrency and Consistency 20-13



How Oracle Manages Data Concurrency and Consistency

so for many applications protection against phantoms and non-repeatable reads is
not important. Therefore many developers choose read committed to avoid the
need to write such error checking and retry code in each transaction.

Serializable Isolation
Oracle’s serializable isolation is suitable for environments where there is a relatively
low chance that two concurrent transactions will modify the same rows and the
long-running transactions are primarily read-only. It is most suitable for
environments with large databases and short transactions that update only a few
rows.

Serializable isolation mode provides somewhat more consistency by protecting
against phantoms and nonrepeatable reads and can be important where a
read/write transaction executes a query more than once.

Unlike other implementations of serializable isolation, which lock blocks for read
as well as write, Oracle provides nonblocking queries and the fine granularity of
row-level locking, both of which reduce write/write contention. For applications
that experience mostly read/write contention, Oracle serializable isolation can
provide significantly more throughput than other systems. Therefore, some
applications might be suitable for serializable isolation on Oracle but not on
other systems.

All queries in an Oracle serializable transaction see the database as of a single point
in time, so this isolation level is suitable where multiple consistent queries must be
issued in a read/write transaction. A report-writing application that generates
summary data and stores it in the database might use serializable mode because it
provides the consistency that a READ ONLY transaction provides, but also allows
INSERT, UPDATE, and DELETE.

Note: Transactions containing DML statements with subqueries
should use serializable isolation to guarantee consistent read.

Coding serializable transactions requires extra work by the application developer to
check for the "Cannot serialize access" error and to roll back and retry the
transaction. Similar extra coding is needed in other database management systems
to manage deadlocks. For adherence to corporate standards or for applications that
are run on multiple database management systems, it may be necessary to design
transactions for serializable mode. Transactions that check for serializability failures
and retry can be used with Oracle read committed mode, which does not generate
serializability errors.

20-14 Oracle9i Database Concepts



How Oracle Manages Data Concurrency and Consistency

Serializable mode is probably not the best choice in an environment with relatively
long transactions that must update the same rows accessed by a high volume of
short update transactions. Because a longer running transaction is unlikely to be the
first to modify a given row, it will repeatedly need to roll back, wasting work. Note
that a conventional read-locking, pessimistic implementation of serializable mode
would not be suitable for this environment either, because long-running
transactions— even read transactions— would block the progress of short update
transactions and vice versa.)

Application developers should take into account the cost of rolling back and
retrying transactions when using serializable mode. As with read-locking systems,
where deadlocks occur frequently, use of serializable mode requires rolling back the
work done by terminated transactions and retrying them. In a high contention
environment, this activity can use significant resources.

In most environments, a transaction that restarts after receiving the "Cannot
serialize access" error is unlikely to encounter a second conflict with another
transaction. For this reason it can help to execute those statements most likely to
contend with other transactions as early as possible in a serializable transaction.
However, there is no guarantee that the transaction will complete successfully, so
the application should be coded to limit the number of retries.

Although Oracle serializable mode is compatible with SQL92 and offers many
benefits compared with read-locking implementations, it does not provide
semantics identical to such systems. Application designers must take into account
the fact that reads in Oracle do not block writes as they do in other systems.
Transactions that check for database consistency at the application level can require
coding techniques such as the use of SELECT FOR UPDATE. This issue should be
considered when applications using serializable mode are ported to Oracle from
other environments.

Quiesce Database
You can put the system into quiesced state. The system is in quiesced state if there
are no active sessions, other than SYS and SYSTEM. An active session is defined as a
session that is currently inside a transaction, a query, a fetch or a PL/SQL
procedure, or a session that is currently holding any shared resources (for example,
enqueues). Database administrators are the only users who can proceed when the
system is in quiesced state.

Database administrators can perform certain actions in the quiesced state that
cannot be safely done when the system is not quiesced. These actions include:

Data Concurrency and Consistency 20-15



How Oracle Manages Data Concurrency and Consistency

Actions that might fail if there are concurrent user transactions or queries. For
example, changing the schema of a database table will fail if a concurrent
transaction is accessing the same table.

Actions whose intermediate effect could be detrimental to concurrent user
transactions or queries. For example:

1. Change the schema of a database table.

2. Update a PL/SQL procedure to a new version that uses this new schema of
the database table.

Between Step 1 and Step 2, the new schema of the table is inconsistent with the
implementation of the PL/SQL procedure. This inconsistency would adversely
affect users concurrently trying to execute the PL/SQL procedure.

For systems that must operate continuously, the ability to perform such actions
without shutting down the database is critical.

The Database Resource Manager blocks all actions that were initiated by a user
other than SYS or SYSTEM while the system is quiesced. Such actions are allowed to
proceed when the system goes back to normal (unquiesced) state. Users do not get
any additional error messages from the quiesced state.

How a Database Is Quiesced The database administrator uses the ALTER SYSTEM
QUIESCE RESTRICTED statement to quiesce the database. Only users SYS and
SYSTEM can issue the ALTER SYSTEM QUIESCE RESTRICTED statement. For all
instances with the database open, issuing this statement has the following effect:

Oracle instructs the Database Resource Manager in all instances to prevent all
inactive sessions (other than SYS and SYSTEM) from becoming active. No user
other than SYS and SYSTEM can start a new transaction, a new query, a new
fetch, or a new PL/SQL operation.

Oracle waits for all existing transactions in all instances that were initiated by a
user other than SYS or SYSTEM to finish (either commit or terminate). Oracle
also waits for all running queries, fetches, and PL/SQL procedures in all
instances that were initiated by users other than SYS or SYSTEM and that are
not inside transactions to finish. If a query is carried out by multiple successive
OCI fetches, Oracle does not wait for all fetches to finish. It waits for the current
fetch to finish and then blocks the next fetch. Oracle also waits for all sessions
(other than those of SYS or SYSTEM) that hold any shared resources (such as
enqueues) to release those resources. After all these operations finish, Oracle
places the database into quiesced state and finishes executing the QUIESCE
RESTRICTED statement.

20-16 Oracle9i Database Concepts



How Oracle Locks Data

If an instance is running in shared server mode, Oracle instructs the Database
Resource Manager to block logins (other than SYS or SYSTEM) on that instance.
If an instance is running in non-shared-server mode, Oracle does not impose
any restrictions on user logins in that instance.

During the quiesced state, you cannot change the Resource Manager plan in any
instance.

The ALTER SYSTEM UNQUIESCE statement puts all running instances back into
normal mode, so that all blocked actions can proceed.

See Also:

Oracle9i SQL Reference

Oracle9i Database Administrator’s Guide

How Oracle Locks Data
Locks are mechanisms that prevent destructive interaction between transactions
accessing the same resource— either user objects such as tables and rows or system
objects not visible to users, such as shared data structures in memory and data
dictionary rows.

In all cases, Oracle automatically obtains necessary locks when executing SQL
statements, so users need not be concerned with such details. Oracle automatically
uses the lowest applicable level of restrictiveness to provide the highest degree of
data concurrency yet also provide fail-safe data integrity. Oracle also allows the user
to lock data manually.

See Also: "Types of Locks" on page 20-21

Transactions and Data Concurrency
Oracle provides data concurrency and integrity between transactions using its
locking mechanisms. Because the locking mechanisms of Oracle are tied closely to
transaction control, application designers need only define transactions properly,
and Oracle automatically manages locking.

Keep in mind that Oracle locking is fully automatic and requires no user action.
Implicit locking occurs for all SQL statements so that database users never need to
lock any resource explicitly. Oracle’s default locking mechanisms lock data at the
lowest level of restrictiveness to guarantee data integrity while allowing the highest
degree of data concurrency.

Data Concurrency and Consistency 20-17



How Oracle Locks Data

See Also: "Explicit (Manual) Data Locking" on page 20-32

Modes of Locking
Oracle uses two modes of locking in a multiuser database:

Exclusive lock mode prevents the associates resource from being shared. This
lock mode is obtained to modify data. The first transaction to lock a resource
exclusively is the only transaction that can alter the resource until the exclusive
lock is released.

Share lock mode allows the associated resource to be shared, depending on the
operations involved. Multiple users reading data can share the data, holding
share locks to prevent concurrent access by a writer (who needs an exclusive
lock). Several transactions can acquire share locks on the same resource.

Lock Duration
All locks acquired by statements within a transaction are held for the duration of
the transaction, preventing destructive interference including dirty reads, lost
updates, and destructive DDL operations from concurrent transactions. The
changes made by the SQL statements of one transaction become visible only to
other transactions that start after the first transaction is committed.

Oracle releases all locks acquired by the statements within a transaction when you
either commit or roll back the transaction. Oracle also releases locks acquired after a
savepoint when rolling back to the savepoint. However, only transactions not
waiting for the previously locked resources can acquire locks on the now available
resources. Waiting transactions will continue to wait until after the original
transaction commits or rolls back completely.

Data Lock Conversion Versus Lock Escalation
A transaction holds exclusive row locks for all rows inserted, updated, or deleted
within the transaction. Because row locks are acquired at the highest degree of
restrictiveness, no lock conversion is required or performed.

Oracle automatically converts a table lock of lower restrictiveness to one of higher
restrictiveness as appropriate. For example, assume that a transaction uses a
SELECT statement with the FOR UPDATE clause to lock rows of a table. As a result,
it acquires the exclusive row locks and a row share table lock for the table. If the
transaction later updates one or more of the locked rows, the row share table lock is
automatically converted to a row exclusive table lock.

20-18 Oracle9i Database Concepts



How Oracle Locks Data

Lock escalation occurs when numerous locks are held at one level of granularity
(for example, rows) and a database raises the locks to a higher level of granularity
(for example, table). For example, if a single user locks many rows in a table, some
databases automatically escalate the user’s row locks to a single table. The number
of locks is reduced, but the restrictiveness of what is being locked is increased.

Oracle never escalates locks. Lock escalation greatly increases the likelihood of
deadlocks. Imagine the situation where the system is trying to escalate locks on
behalf of transaction T1 but cannot because of the locks held by transaction T2. A
deadlock is created if transaction T2 also requires lock escalation of the same data
before it can proceed.

See Also: "Table Locks (TM)" on page 20-23

Deadlocks
A deadlock can occur when two or more users are waiting for data locked by each
other. Deadlocks prevent some transactions from continuing to work. Figure 20– 3
illustrates two transactions in a deadlock.

In Figure 20– 3, no problem exists at time point A, as each transaction has a row lock
on the row it attempts to update. Each transaction proceeds without being
terminated. However, each tries next to update the row currently held by the other
transaction. Therefore, a deadlock results at time point B, because neither
transaction can obtain the resource it needs to proceed or terminate. It is a deadlock
because no matter how long each transaction waits, the conflicting locks are held.

Data Concurrency and Consistency 20-19



How Oracle Locks Data

Figure 20– 3 Two Transactions in a Deadlock

Transaction 1 (T1) Time Transaction 2 (T2) 

UPDATE emp
 SET sal = sal*1.1
 WHERE empno = 1000; 

UPDATE emp
 SET sal = sal*1.1
 WHERE empno = 2000; 

ORA–00060:
 deadlock detected while
 waiting for resource 

UPDATE emp

 WHERE empno = 2000; 

UPDATE emp
 SET mgr = 1342
 WHERE empno = 1000;

 SET mgr = 1342 

A

B

C

Deadlock Detection
Oracle automatically detects deadlock situations and resolves them by rolling back
one of the statements involved in the deadlock, thereby releasing one set of the
conflicting row locks. A corresponding message also is returned to the transaction
that undergoes statement-level rollback. The statement rolled back is the one
belonging to the transaction that detects the deadlock. Usually, the signalled
transaction should be rolled back explicitly, but it can retry the rolled-back
statement after waiting.

Note: In distributed transactions, local deadlocks are detected
by analyzing a "waits for" graph, and global deadlocks are detected
by a time-out. Once detected, nondistributed and distributed
deadlocks are handled by the database and application in the
same way.

Deadlocks most often occur when transactions explicitly override the default
locking of Oracle. Because Oracle itself does no lock escalation and does not use
read locks for queries, but does use row-level locking (rather than page-level
locking), deadlocks occur infrequently in Oracle.

20-20 Oracle9i Database Concepts



How Oracle Locks Data

See Also: "Explicit (Manual) Data Locking" on page 20-32 for
more information about manually acquiring locks

Avoid Deadlocks
Multitable deadlocks can usually be avoided if transactions accessing the same
tables lock those tables in the same order, either through implicit or explicit locks.
For example, all application developers might follow the rule that when both a
master and detail table are updated, the master table is locked first and then the
detail table. If such rules are properly designed and then followed in all
applications, deadlocks are very unlikely to occur.

When you know you will require a sequence of locks for one transaction, consider
acquiring the most exclusive (least compatible) lock first.

Types of Locks
Oracle automatically uses different types of locks to control concurrent access to
data and to prevent destructive interaction between users. Oracle automatically
locks a resource on behalf of a transaction to prevent other transactions from doing
something also requiring exclusive access to the same resource. The lock is released
automatically when some event occurs so that the transaction no longer requires the
resource.

Throughout its operation, Oracle automatically acquires different types of locks at
different levels of restrictiveness depending on the resource being locked and the
operation being performed.

Oracle locks fall into one of three general categories.

Lock Description

DML locks (data locks) DML locks protect data. For example, table locks lock
entire tables, row locks lock selected rows.

DDL locks (dictionary DDL locks protect the structure of schema objects— for
locks) example, the definitions of tables and views.

Internal locks and latches Internal locks and latches protect internal database
structures such as datafiles. Internal locks and latches
are entirely automatic.

The following sections discuss DML locks, DDL locks, and internal locks.

Data Concurrency and Consistency 20-21



How Oracle Locks Data

DML Locks
The purpose of a DML (data) lock is to guarantee the integrity of data being
accessed concurrently by multiple users. DML locks prevent destructive
interference of simultaneous conflicting DML or DDL operations. For example,
Oracle DML locks guarantee that a specific row in a table can be updated by only
one transaction at a time and that a table cannot be dropped if an uncommitted
transaction contains an insert into the table.

DML operations can acquire data locks at two different levels: for specific rows and
for entire tables.

Note: The acronym in parentheses after each type of lock or lock
mode is the abbreviation used in the Locks Monitor of Enterprise
Manager. Enterprise Manager might display TM for any table lock,
rather than indicate the mode of table lock (such as RS or SRX).

Row Locks (TX)
The only DML locks Oracle acquires automatically are row-level locks. There is no
limit to the number of row locks held by a statement or transaction, and Oracle does
not escalate locks from the row level to a coarser granularity. Row locking provides
the finest grain locking possible and so provides the best possible concurrency and
throughput.

The combination of multiversion concurrency control and row-level locking means
that users contend for data only when accessing the same rows, specifically:

Readers of data do not wait for writers of the same data rows.

Writers of data do not wait for readers of the same data rows unless SELECT ...
FOR UPDATE is used, which specifically requests a lock for the reader.

Writers only wait for other writers if they attempt to update the same rows at
the same time.

Note: Readers of data may have to wait for writers of the same
data blocks in some very special cases of pending distributed
transactions.

20-22 Oracle9i Database Concepts



How Oracle Locks Data

A transaction acquires an exclusive DML lock for each individual row modified by
one of the following statements: INSERT, UPDATE, DELETE, and SELECT with the
FOR UPDATE clause.

A modified row is always locked exclusively so that other users cannot modify the
row until the transaction holding the lock is committed or rolled back. However, if
the transaction dies due to instance failure, block-level recovery makes a row
available before the entire transaction is recovered. Row locks are always acquired
automatically by Oracle as a result of the statements listed previously.

If a transaction obtains a row lock for a row, the transaction also acquires a table
lock for the corresponding table. The table lock prevents conflicting DDL operations
that would override data changes in a current transaction.

See Also: "DDL Locks" on page 20-30

Table Locks (TM)
A transaction acquires a table lock when a table is modified in the following DML
statements: INSERT, UPDATE, DELETE, SELECT with the FOR UPDATE clause, and
LOCK TABLE. These DML operations require table locks for two purposes: to reserve
DML access to the table on behalf of a transaction and to prevent DDL operations
that would conflict with the transaction. Any table lock prevents the acquisition of
an exclusive DDL lock on the same table and thereby prevents DDL operations that
require such locks. For example, a table cannot be altered or dropped if an
uncommitted transaction holds a table lock for it.

A table lock can be held in any of several modes: row share (RS), row exclusive
(RX), share (S), share row exclusive (SRX), and exclusive (X). The restrictiveness of a
table lock’s mode determines the modes in which other table locks on the same
table can be obtained and held.

Table 20– 3 shows the table lock modes that statements acquire and operations that
those locks permit and prohibit.

Data Concurrency and Consistency 20-23



How Oracle Locks Data

Table 20– 3 Summary of Table Locks

Lock Modes Permitted?
Mode of

SQL Statement Table Lock RS RX S SRX X

SELECT...FROM table... none Y Y Y Y Y

INSERT INTO table ... RX Y Y N N N

UPDATE table ... RX Y* Y* N N N

DELETE FROM table ... RX Y* Y* N N N

SELECT ... FROM table RS Y* Y* Y* Y* N
FOR UPDATE OF ...

LOCK TABLE table IN RS Y Y Y Y N
ROW SHARE MODE

LOCK TABLE table IN RX Y Y N N N
ROW EXCLUSIVE MODE

LOCK TABLE table IN S Y N Y N N
SHARE MODE

LOCK TABLE table IN SRX Y N N N N
SHARE ROW EXCLUSIVE
MODE

LOCK TABLE table IN X N N N N N
EXCLUSIVE MODE

RS: row share *Yes, if no conflicting row locks are
RX: row exclusive held by another transaction.

S: share Otherwise, waits occur.

SRX: share row exclusive
X: exclusive

The following sections explain each mode of table lock, from least restrictive to most
restrictive. They also describe the actions that cause the transaction to acquire a
table lock in that mode and which actions are permitted and prohibited in other
transactions by a lock in that mode.

See Also: "Explicit (Manual) Data Locking" on page 20-32

Row Share Table Locks (RS) A row share table lock (also sometimes called a subshare
table lock, SS) indicates that the transaction holding the lock on the table has
locked rows in the table and intends to update them. A row share table lock is

20-24 Oracle9i Database Concepts



How Oracle Locks Data

automatically acquired for a table when one of the following SQL statements is
executed:

SELECT ... FROM table ... FOR UPDATE OF ... ;

LOCK TABLE table IN ROW SHARE MODE;

A row share table lock is the least restrictive mode of table lock, offering the highest
degree of concurrency for a table.

Permitted Operations: A row share table lock held by a transaction allows other
transactions to query, insert, update, delete, or lock rows concurrently in the same
table. Therefore, other transactions can obtain simultaneous row share, row
exclusive, share, and share row exclusive table locks for the same table.

Prohibited Operations: A row share table lock held by a transaction prevents other
transactions from exclusive write access to the same table using only the following
statement:

LOCK TABLE table IN EXCLUSIVE MODE;

Row Exclusive Table Locks (RX) A row exclusive table lock (also called a subexclusive
table lock, SX) generally indicates that the transaction holding the lock has made
one or more updates to rows in the table. A row exclusive table lock is acquired
automatically for a table modified by the following types of statements:

INSERT INTO table ... ;

UPDATE table ... ;

DELETE FROM table ... ;

LOCK TABLE table IN ROW EXCLUSIVE MODE;

A row exclusive table lock is slightly more restrictive than a row share table lock.

Permitted Operations: A row exclusive table lock held by a transaction allows other
transactions to query, insert, update, delete, or lock rows concurrently in the same
table. Therefore, row exclusive table locks allow multiple transactions to obtain
simultaneous row exclusive and row share table locks for the same table.

Prohibited Operations: A row exclusive table lock held by a transaction prevents other
transactions from manually locking the table for exclusive reading or writing.
Therefore, other transactions cannot concurrently lock the table using the following
statements:

Data Concurrency and Consistency 20-25



How Oracle Locks Data

LOCK TABLE table IN SHARE MODE;

LOCK TABLE table IN SHARE EXCLUSIVE MODE;

LOCK TABLE table IN EXCLUSIVE MODE;

Share Table Locks (S) A share table lock is acquired automatically for the table
specified in the following statement:

LOCK TABLE table IN SHARE MODE;

Permitted Operations: A share table lock held by a transaction allows other
transactions only to query the table, to lock specific rows with SELECT ... FOR
UPDATE, or to execute LOCK TABLE ... IN SHARE MODE statements successfully. No
updates are allowed by other transactions. Multiple transactions can hold share
table locks for the same table concurrently. In this case, no transaction can update
the table (even if a transaction holds row locks as the result of a SELECT statement
with the FOR UPDATE clause). Therefore, a transaction that has a share table lock can
update the table only if no other transactions also have a share table lock on the
same table.

Prohibited Operations: A share table lock held by a transaction prevents other
transactions from modifying the same table and from executing the following
statements:

LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;

LOCK TABLE table IN EXCLUSIVE MODE;

LOCK TABLE table IN ROW EXCLUSIVE MODE;

Share Row Exclusive Table Locks (SRX) A share row exclusive table lock (also
sometimes called a share-subexclusive table lock, SSX) is more restrictive than a
share table lock. A share row exclusive table lock is acquired for a table as follows:

LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;

Permitted Operations: Only one transaction at a time can acquire a share row
exclusive table lock on a given table. A share row exclusive table lock held by a
transaction allows other transactions to query or lock specific rows using SELECT
with the FOR UPDATE clause, but not to update the table.

Prohibited Operations: A share row exclusive table lock held by a transaction prevents
other transactions from obtaining row exclusive table locks and modifying the same
table. A share row exclusive table lock also prohibits other transactions from

20-26 Oracle9i Database Concepts



How Oracle Locks Data

obtaining share, share row exclusive, and exclusive table locks, which prevents
other transactions from executing the following statements:

LOCK TABLE table IN SHARE MODE;

LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;

LOCK TABLE table IN ROW EXCLUSIVE MODE;

LOCK TABLE table IN EXCLUSIVE MODE;

Exclusive Table Locks (X) An exclusive table lock is the most restrictive mode of table
lock, allowing the transaction that holds the lock exclusive write access to the table.
An exclusive table lock is acquired for a table as follows:

LOCK TABLE table IN EXCLUSIVE MODE;

Permitted Operations: Only one transaction can obtain an exclusive table lock for a
table. An exclusive table lock permits other transactions only to query the table.

Prohibited Operations: An exclusive table lock held by a transaction prohibits other
transactions from performing any type of DML statement or placing any type of
lock on the table.

DML Locks Automatically Acquired for DML Statements
The previous sections explained the different types of data locks, the modes in
which they can be held, when they can be obtained, when they are obtained, and
what they prohibit. The following sections summarize how Oracle automatically
locks data on behalf of different DML operations.

Table 20– 4 summarizes the information in the following sections.

Data Concurrency and Consistency 20-27



How Oracle Locks Data

Table 20– 4 Locks Obtained By DML Statements

DML Statement Row Locks? Mode of Table Lock

SELECT ... FROM table

INSERT INTO table ... X RX

UPDATE table ... X RX

DELETE FROM table ... X RX

SELECT ... FROM table ...
FOR UPDATE OF ...

X RS

LOCK TABLE table IN ...

ROW SHARE MODE RS

ROW EXCLUSIVE MODE RX

SHARE MODE S

SHARE EXCLUSIVE MODE SRX

EXCLUSIVE MODE X

X: exclusive
RX: row exclusive

RS: row share
S: share
SRX: share row exclusive

Default Locking for Queries Queries are the SQL statements least likely to interfere
with other SQL statements because they only read data. INSERT, UPDATE, and
DELETE statements can have implicit queries as part of the statement. Queries
include the following kinds of statements:

SELECT

INSERT ... SELECT ... ;

UPDATE ... ;

DELETE ... ;

They do not include the following statement:

SELECT ... FOR UPDATE OF ... ;

The following characteristics are true of all queries that do not use the FOR UPDATE
clause:

20-28 Oracle9i Database Concepts



How Oracle Locks Data

A query acquires no data locks. Therefore, other transactions can query and
update a table being queried, including the specific rows being queried.
Because queries lacking FOR UPDATE clauses do not acquire any data locks to
block other operations, such queries are often referred to in Oracle as
nonblocking queries.

A query does not have to wait for any data locks to be released; it can always
proceed. (Queries may have to wait for data locks in some very specific cases of
pending distributed transactions.)

Default Locking for INSERT, UPDATE, DELETE, and SELECT ... FOR UPDATE The locking
characteristics of INSERT, UPDATE, DELETE, and SELECT ... FOR UPDATE
statements are as follows:

The transaction that contains a DML statement acquires exclusive row locks on
the rows modified by the statement. Other transactions cannot update or delete
the locked rows until the locking transaction either commits or rolls back.

The transaction that contains a DML statement does not need to acquire row
locks on any rows selected by a subquery or an implicit query, such as a query
in a WHERE clause. A subquery or implicit query in a DML statement is
guaranteed to be consistent as of the start of the query and does not see the
effects of the DML statement it is part of.

A query in a transaction can see the changes made by previous DML statements
in the same transaction, but cannot see the changes of other transactions begun
after its own transaction.

In addition to the necessary exclusive row locks, a transaction that contains a
DML statement acquires at least a row exclusive table lock on the table that
contains the affected rows. If the containing transaction already holds a share,
share row exclusive, or exclusive table lock for that table, the row exclusive
table lock is not acquired. If the containing transaction already holds a row
share table lock, Oracle automatically converts this lock to a row exclusive
table lock.

Data Concurrency and Consistency 20-29



How Oracle Locks Data

DDL Locks
A data dictionary lock (DDL) protects the definition of a schema object while that
object is acted upon or referred to by an ongoing DDL operation. Recall that a DDL
statement implicitly commits its transaction. For example, assume that a user
creates a procedure. On behalf of the user’s single-statement transaction, Oracle
automatically acquires DDL locks for all schema objects referenced in the procedure
definition. The DDL locks prevent objects referenced in the procedure from being
altered or dropped before the procedure compilation is complete.

Oracle acquires a dictionary lock automatically on behalf of any DDL transaction
requiring it. Users cannot explicitly request DDL locks. Only individual schema
objects that are modified or referenced are locked during DDL operations. The
whole data dictionary is never locked.

DDL locks fall into three categories: exclusive DDL locks, share DDL locks, and
breakable parse locks.

Exclusive DDL Locks
Most DDL operations, except for those listed in the next section, "Share DDL Locks",
require exclusive DDL locks for a resource to prevent destructive interference with
other DDL operations that might modify or reference the same schema object. For
example, a DROP TABLE operation is not allowed to drop a table while an ALTER
TABLE operation is adding a column to it, and vice versa.

During the acquisition of an exclusive DDL lock, if another DDL lock is already
held on the schema object by another operation, the acquisition waits until the older
DDL lock is released and then proceeds.

DDL operations also acquire DML locks (data locks) on the schema object to be
modified.

Share DDL Locks
Some DDL operations require share DDL locks for a resource to prevent destructive
interference with conflicting DDL operations, but allow data concurrency for
similar DDL operations. For example, when a CREATE PROCEDURE statement is
executed, the containing transaction acquires share DDL locks for all referenced
tables. Other transactions can concurrently create procedures that reference the
same tables and therefore acquire concurrent share DDL locks on the same tables,
but no transaction can acquire an exclusive DDL lock on any referenced table. No
transaction can alter or drop a referenced table. As a result, a transaction that holds
a share DDL lock is guaranteed that the definition of the referenced schema object
will remain constant for the duration of the transaction.

20-30 Oracle9i Database Concepts



How Oracle Locks Data

A share DDL lock is acquired on a schema object for DDL statements that include
the following statements: AUDIT, NOAUDIT, COMMENT, CREATE [OR REPLACE]
VIEW/ PROCEDURE/PACKAGE/PACKAGE BODY/FUNCTION/ TRIGGER, CREATE
SYNONYM, and CREATE TABLE (when the CLUSTER parameter is not included).

Breakable Parse Locks
A SQL statement (or PL/SQL program unit) in the shared pool holds a parse lock
for each schema object it references. Parse locks are acquired so that the associated
shared SQL area can be invalidated if a referenced object is altered or dropped. A
parse lock does not disallow any DDL operation and can be broken to allow
conflicting DDL operations, hence the name breakable parse lock.

A parse lock is acquired during the parse phase of SQL statement execution and
held as long as the shared SQL area for that statement remains in the shared pool.

See Also: Chapter 15, "Dependencies Among Schema Objects"

Duration of DDL Locks
The duration of a DDL lock depends on its type. Exclusive and share DDL locks last
for the duration of DDL statement execution and automatic commit. A parse lock
persists as long as the associated SQL statement remains in the shared pool.

DDL Locks and Clusters
A DDL operation on a cluster acquires exclusive DDL locks on the cluster and on all
tables and materialized views in the cluster. A DDL operation on a table or
materialized view in a cluster acquires a share lock on the cluster, in addition to a
share or exclusive DDL lock on the table or materialized view. The share DDL lock
on the cluster prevents another operation from dropping the cluster while the first
operation proceeds.

Latches and Internal Locks
Latches and internal locks protect internal database and memory structures. Both
are inaccessible to users, because users have no need to control over their
occurrence or duration. The following section helps to interpret the Enterprise
Manager or SQL*Plus LOCKS and LATCHES monitors.

Latches
Latches are simple, low-level serialization mechanisms to protect shared data
structures in the system global area (SGA). For example, latches protect the list of

Data Concurrency and Consistency 20-31



How Oracle Locks Data

users currently accessing the database and protect the data structures describing the
blocks in the buffer cache. A server or background process acquires a latch for a
very short time while manipulating or looking at one of these structures. The
implementation of latches is operating system dependent, particularly in regard to
whether and how long a process will wait for a latch.

Internal Locks
Internal locks are higher-level, more complex mechanisms than latches and serve a
variety of purposes.

Dictionary Cache Locks These locks are of very short duration and are held on entries
in dictionary caches while the entries are being modified or used. They guarantee
that statements being parsed do not see inconsistent object definitions.

Dictionary cache locks can be shared or exclusive. Shared locks are released when
the parse is complete. Exclusive locks are released when the DDL operation is
complete.

File and Log Management Locks These locks protect various files. For example, one
lock protects the control file so that only one process at a time can change it.
Another lock coordinates the use and archiving of the redo log files. Datafiles are
locked to ensure that multiple instances mount a database in shared mode or that
one instance mounts it in exclusive mode. Because file and log locks indicate the
status of files, these locks are necessarily held for a long time.

Tablespace and Rollback Segment Locks These locks protect tablespaces and rollback
segments. For example, all instances accessing a database must agree on whether a
tablespace is online or offline. Rollback segments are locked so that only one
instance can write to a segment.

Explicit (Manual) Data Locking
Oracle always performs locking automatically to ensure data concurrency, data
integrity, and statement-level read consistency. However, you can override the
Oracle default locking mechanisms. Overriding the default locking is useful in
situations such as these:

Applications require transaction-level read consistency or repeatable reads. In
other words, queries in them must produce consistent data for the duration of
the transaction, not reflecting changes by other transactions. You can achieve
transaction-level read consistency by using explicit locking, read-only
transactions, serializable transactions, or by overriding default locking.

20-32 Oracle9i Database Concepts



How Oracle Locks Data

Applications require that a transaction have exclusive access to a resource so
that the transaction does not have to wait for other transactions to complete.

Oracle’s automatic locking can be overridden at the transaction level or the session
level.

At the transaction level, transactions that include the following SQL statements
override Oracle’s default locking:

The SET TRANSACTION ISOLATION LEVEL statement

The LOCK TABLE statement (which locks either a table or, when used with
views, the underlying base tables)

The SELECT ... FOR UPDATE statement

Locks acquired by these statements are released after the transaction commits or
rolls back.

At the session level, a session can set the required transaction isolation level with
the ALTER SESSION statement.

Note: If Oracle’s default locking is overridden at any level, the
database administrator or application developer should ensure that
the overriding locking procedures operate correctly. The locking
procedures must satisfy the following criteria: data integrity is
guaranteed, data concurrency is acceptable, and deadlocks are not
possible or are appropriately handled.

See Also: Oracle9i SQL Reference for detailed descriptions of the
SQL statements LOCK TABLE and SELECT ... FOR UPDATE

Examples of Concurrency under Explicit Locking
The following illustration shows how Oracle maintains data concurrency, integrity,
and consistency when LOCK TABLE and SELECT with the FOR UPDATE clause
statements are used.

Note: For brevity, the message text for ORA-00054 ("resource
busy and acquire with NOWAIT specified") is not included.
User-entered text is in bold.

Data Concurrency and Consistency 20-33



- - - - - - -

How Oracle Locks Data

Time
Transaction 1 Point Transaction 2

LOCK TABLE scott.dept
IN ROW SHARE MODE;

Statement processed

UPDATE scott.dept
SET loc = ’NEW YORK’
WHERE deptno = 20;

(waits because T2 has locked same
rows)

1 row processed.
ROLLBACK;

LOCK TABLE scott.dept
IN ROW EXCLUSIVE MODE;

Statement processed.

1

2 DROP TABLE scott.dept;
DROP TABLE scott.dept

*
ORA-00054
(exclusive DDL lock not possible
because of T1’s table lock)

3 LOCK TABLE scott.dept
IN EXCLUSIVE MODE NOWAIT;

ORA-00054

4 SELECT LOC
FROM scott.dept
WHERE deptno = 20
FOR UPDATE OF loc;

LOC

DALLAS
1 row selected

5

6 ROLLBACK;
(releases row locks)

7

8

9 LOCK TABLE scott.dept
IN EXCLUSIVE MODE
NOWAIT;

ORA-00054

20-34 Oracle9i Database Concepts



- - - - - -

How Oracle Locks Data

Time
Transaction 1 Point Transaction 2

SELECT loc
FROM scott.dept
WHERE deptno = 20
FOR UPDATE OF loc;

LOC

DALLAS
1 row selected.

ROLLBACK;

LOCK TABLE scott.dept
IN SHARE MODE

Statement processed

10 LOCK TABLE scott.dept
IN SHARE ROW EXCLUSIVE
MODE NOWAIT;

ORA-00054

11 LOCK TABLE scott.dept
IN SHARE ROW EXCLUSIVE
MODE NOWAIT;

ORA-00054

12 UPDATE scott.dept
SET loc = ’NEW YORK’
WHERE deptno = 20;

1 row processed.

13 ROLLBACK;

14

15 UPDATE scott.dept
SET loc = ’NEW YORK’
WHERE deptno = 20;

(waits because T1 has locked same
rows)

16

17 1 row processed.
(conflicting locks were released)
ROLLBACK;

18

19 LOCK TABLE scott.dept
IN EXCLUSIVE MODE NOWAIT;

ORA-00054

Data Concurrency and Consistency 20-35



How Oracle Locks Data

Transaction 1
Time
Point Transaction 2

20 LOCK TABLE scott.dept
IN SHARE ROW EXCLUSIVE
MODE NOWAIT;

ORA-00054

21 LOCK TABLE scott.dept
IN SHARE MODE;

Statement processed.

22 SELECT loc
FROM scott.dept
WHERE deptno = 20;

LOC
- - - - - -
DALLAS
1 row selected.

23 SELECT loc
FROM scott.dept
WHERE deptno = 20
FOR UPDATE OF loc;

LOC
- - - - - -
DALLAS
1 row selected.

24 UPDATE scott.dept
SET loc = ’NEW YORK’
WHERE deptno = 20;

(waits because T1 holds
conflicting table lock)

ROLLBACK; 25

26 1 row processed.
(conflicting table lock released)
ROLLBACK;

LOCK TABLE scott.dept
IN SHARE ROW
EXCLUSIVE MODE;

Statement processed.

27

20-36 Oracle9i Database Concepts



How Oracle Locks Data

Transaction 1
Time
Point Transaction 2

28 LOCK TABLE scott.dept
IN EXCLUSIVE MODE
NOWAIT;

ORA-00054

29 LOCK TABLE scott.dept
IN SHARE ROW
EXCLUSIVE MODE
NOWAIT;

ORA-00054

30 LOCK TABLE scott.dept
IN SHARE MODE NOWAIT;

ORA-00054

31 LOCK TABLE scott.dept
IN ROW EXCLUSIVE
MODE NOWAIT;

ORA-00054

32 LOCK TABLE scott.dept
IN SHARE MODE NOWAIT;

ORA-00054

33 SELECT loc
FROM scott.dept
WHERE deptno = 20;

LOC
- - - - - -
DALLAS
1 row selected.

34 SELECT loc
FROM scott.dept
WHERE deptno = 20
FOR UPDATE OF loc;

LOC
- - - - - -
DALLAS
1 row selected.

Data Concurrency and Consistency 20-37



How Oracle Locks Data

Time
Transaction 1 Point Transaction 2

35

UPDATE scott.dept 36
SET loc = ’NEW YORK’
WHERE deptno = 20;

(waits because T2 has locked same
rows)

Cancel operation 37
ROLLBACK;

38

LOCK TABLE scott.dept 39
IN EXCLUSIVE MODE;

40

41

42

43

44

UPDATE scott.dept
SET loc = ’NEW YORK’
WHERE deptno = 20;

(waits because T1 holds
conflicting table lock)

(deadlock)

1 row processed.

LOCK TABLE scott.dept
IN EXCLUSIVE MODE;

ORA-00054

LOCK TABLE scott.dept
IN ROW EXCLUSIVE MODE
NOWAIT;

ORA-00054

LOCK TABLE scott.dept
IN SHARE MODE;

ORA-00054

LOCK TABLE scott.dept
IN ROW EXCLUSIVE
MODE NOWAIT;

ORA-00054

LOCK TABLE scott.dept
IN ROW SHARE MODE
NOWAIT;

ORA-00054

20-38 Oracle9i Database Concepts



How Oracle Locks Data

Transaction 1
Time
Point Transaction 2

45 SELECT loc
FROM scott.dept
WHERE deptno = 20;

LOC
- - - - - -
DALLAS
1 row selected.

46 SELECT loc
FROM scott.dept
WHERE deptno = 20
FOR UPDATE OF loc;

(waits because T1 has conflicting
table lock)

UPDATE scott.dept
SET deptno = 30
WHERE deptno = 20;

1 row processed.

47

COMMIT; 48

49 0 rows selected.
(T1 released conflicting lock)

SET TRANSACTION READ ONLY; 50

SELECT loc
FROM scott.dept
WHERE deptno = 10;

LOC

51

- - - - - -
BOSTON

52 UPDATE scott.dept
SET loc = ’NEW YORK’
WHERE deptno = 10;

1 row processed.

Data Concurrency and Consistency 20-39



How Oracle Locks Data

Transaction 1
Time
Point Transaction 2

SELECT loc
FROM scott.dept
WHERE deptno = 10;

LOC

53

- - - - - -
BOSTON
(T1 does not see uncommitted
data)

54 COMMIT;

SELECT loc
FROM scott.dept
WHERE deptno = 10;

LOC

55

- - - - - -
(same results seen even after T2
commits)

COMMIT; 56

SELECT loc
FROM scott.dept
WHERE deptno = 10;

LOC

57

- - - - - -
NEW YORK
(committed data is seen)

20-40 Oracle9i Database Concepts



Flashback Query

Oracle Lock Management Services
With Oracle Lock Management services, an application developer can include
statements in PL/SQL blocks that:

Request a lock of a specific type

Give the lock a unique name recognizable in another procedure in the same or
in another instance

Change the lock type

Release the lock

Because a reserved user lock is the same as an Oracle lock, it has all the Oracle lock
functionality including deadlock detection. User locks never conflict with Oracle
locks, because they are identified with the prefix UL.

The Oracle Lock Management services are available through procedures in the
DBMS_LOCK package.

See Also:

Oracle9i Application Developer’s Guide - Fundamentals for more
information about Oracle Lock Management services

Oracle9i Supplied PL/SQL Packages and Types Reference for
information about DBMS_LOCK

Flashback Query
Flashback query lets you view and repair historical data. You can perform queries
on the database as of a certain wall clock time or user-specified system commit
number (SCN).

Flashback query uses Oracle's multiversion read-consistency capabilities to restore
data by applying undo as needed. Administrators can configure undo retention by
simply specifying how long undo should be kept in the database. Using flashback
query, a user can query the database as it existed this morning, yesterday, or last
week. The speed of this operation depends only on the amount of data being
queried and the number of changes to the data that need to be backed out.

You set the date and time you want to view. Then, any SQL query you execute
operates on data as it existed at that time. If you are an authorized user, then you
can correct errors and back out the restored data without needing the intervention
of an administrator.

Data Concurrency and Consistency 20-41



Flashback Query

With the AS OF SQL clause, you can choose different snapshots for each table in the
query. Associating a snapshot with a table is known as table decoration. If you do not
decorate a table with a snapshot, then a default snapshot is used for it. All tables
without a specified snapshot get the same default snapshot.

For example, suppose you want to write a query to find all the new customer
accounts created in the past hour. You could do set operations on two instances of
the same table decorated with different AS OF clauses.

DML and DDL operations can use table decoration to choose snapshots within
subqueries. Operations such as INSERT TABLE AS SELECT and CREATE TABLE AS
SELECT can be used with table decoration in the subqueries to repair tables from
which rows have been mistakenly deleted. Table decoration can be any arbitrary
expression: a bind variable, a constant, a string, date operations, and so on. You can
open a cursor and dynamically bind a snapshot value (a timestamp or an SCN) to
decorate a table with.

See Also: Oracle9i SQL Reference for information on the AS OF
clause

Flashback Query Benefits
Application Transparency

Packaged applications, like report generation tools that only do queries, can run
in flashback query mode by using logon triggers. Applications can run
transparently without requiring changes to code. All the constraints that the
application needs to be satisfied are guaranteed to hold good, because ther is a
consistent version of the database as of the flashback query time.

Application Performance

If an application requires recovery actions, it can do so by saving SCNs and
flashing back to those SCNs. This is a lot easier and faster than saving data sets
and restoring them later, which would be required if the application were to do
explicit versioning. Using flashback query, there are no costs for logging that
would be incurred by explicit versioning.

Online Operation

Flashback query is an online operation. Concurrent DMLs and queries from
other sessions are permitted while an object is being queried inside flashback
query.The speed of these operations is unaffected. Moreover, different sessions
can flash back to different flashback times or SCNs on the same object
concurrently. The speed of the flashback query itself depends on the amount of

20-42 Oracle9i Database Concepts



Flashback Query

undo that needs to be applied, which is proportional to how far back in time the
query goes.

Easy Manageability

There is no additional management on the part of the user, except setting the
appropriate retention interval, having the right privileges, and so on. No
additional logging has to be turned on, because past versions are constructed
automatically, as needed.

Notes:

Flashback query does not undo anything. It is only a query
mechanism. You can take the output from a flashback query
and perform an undo yourself in many circumstances.

Flashback query does not tell you what changed. LogMiner
does that.

Flashback query can be used to undo changes and can be very
efficient if you know the rows that need to be moved back in
time. You can in theory use it to move a full table back in time
but this is very expensive if the table is large since it involves a
full table copy.

Flashback query does not work through DDL operations that
modify columns, or drop or truncate tables.

LogMiner is very good for getting change history, but it gives
you changes in terms of deltas (insert, update, delete), not in
terms of the before and after image of a row. These can be
difficult to deal with in some applications.

Some Uses of Flashback Query

Self-Service Repair
Perhaps you accidentally deleted some important rows from a table and wanted to
recover the deleted rows. To do the repair, you can move backward in time and see
the missing rows and re-insert the deleted row into the current table.

Data Concurrency and Consistency 20-43



Flashback Query

E-Mail or Voice Mail Applications
You might have deleted mail in the past. Using flashback query, you can restore the
deleted mail by moving back in time and re-inserting the deleted message into the
current message box.

Account Balances
You can view account prior account balances as of a certain day in the month.

Packaged Applications
Packaged applications (like report generation tools) can make use of flashback
query without any changes to application logic. Any constraints that the application
expects are guaranteed to be satisfied, because users see a consistent version of the
Database as of the given time or SCN.

In addition, flashback query could be used after examination of audit information
to see the before-image of the data. In DSS enviornments, it could be used for
extraction of data as of a consistent point in time from OLTP systems.

See Also:

Oracle9i Application Developer’s Guide - Fundamentals for more
information about using flashback query

Oracle9i Supplied PL/SQL Packages and Types Reference for a
description of the DBMS_FLASHBACK package

Oracle9i Database Administrator’s Guide for information about
undo tablespaces and setting retention period

20-44 Oracle9i Database Concepts



21
Data Integrity

This chapter explains how to use integrity constraints to enforce the business rules
associated with your database and prevent the entry of invalid information into
tables. The chapter includes:

Introduction to Data Integrity

Introduction to Integrity Constraints

Types of Integrity Constraints

The Mechanisms of Constraint Checking

Deferred Constraint Checking

Constraint States

Data Integrity 21-1



Introduction to Data Integrity

Introduction to Data Integrity
It is important that data adhere to a predefined set of rules, as determined by the
database administrator or application developer. As an example of data integrity,
consider the tables employees and departments and the business rules for the
information in each of the tables, as illustrated in Figure 21– 1.

Figure 21– 1 Examples of Data Integrity

Table DEPT 

EMPNO ENAME SAL COMM DEPTNO

Table EMP 

DEPTNO DNAME LOC

Each row must have a value 
for the ENAME column 

Each value in the DNAME 
column must be unique 

Each value in the 
DEPTNO column 
must match a value in 
the DEPTNO column 
of the DEPT table 

... Other Columns ... 

20
30

RESEARCH
SALES

DALLAS
CHICAGO

6666
7329
7499
7521

MULDER
SMITH
ALLEN
WARD

5500.00
9000.00
7500.00
5000.00

100.00
200.00
400.00

20
20
30
30

7566 JONES 2975.00 30

Each row must have a value Each value in the SAL column 
for the EMPNO column, and must be less than 10,000 
the value must be unique 

Note that some columns in each table have specific rules that constrain the data
contained within them.

21-2 Oracle9i Database Concepts



Introduction to Data Integrity

Types of Data Integrity
This section describes the rules that can be applied to table columns to enforce
different types of data integrity.

Null Rule
A null is a rule defined on a single column that allows or disallows inserts or
updates of rows containing a null (the absence of a value) in that column.

Unique Column Values
A unique value defined on a column (or set of columns) allows the insert or update
of a row only if it contains a unique value in that column (or set of columns).

Primary Key Values
A primary key value defined on a key (a column or set of columns) specifies that
each row in the table can be uniquely identified by the values in the key.

Referential Integrity Rules
A rule defined on a key (a column or set of columns) in one table that guarantees
that the values in that key match the values in a key in a related table (the
referenced value).

Referential integrity also includes the rules that dictate what types of data
manipulation are allowed on referenced values and how these actions affect
dependent values. The rules associated with referential integrity are:

Restrict: Disallows the update or deletion of referenced data.

Set to Null: When referenced data is updated or deleted, all associated
dependent data is set to NULL.

Set to Default: When referenced data is updated or deleted, all associated
dependent data is set to a default value.

Cascade: When referenced data is updated, all associated dependent data is
correspondingly updated. When a referenced row is deleted, all associated
dependent rows are deleted.

No Action: Disallows the update or deletion of referenced data. This differs
from RESTRICT in that it is checked at the end of the statement, or at the end of
the transaction if the constraint is deferred. (Oracle uses No Action as its default
action.)

Data Integrity 21-3



Introduction to Data Integrity

Complex Integrity Checking
Complex integrity checking is a user-defined rule for a column (or set of columns)
that allows or disallows inserts, updates, or deletes of a row based on the value it
contains for the column (or set of columns).

How Oracle Enforces Data Integrity
Oracle enables you to define and enforce each type of data integrity rule defined in
the previous section. Most of these rules are easily defined using integrity
constraints or database triggers.

Integrity Constraints Description
An integrity constraint is a declarative method of defining a rule for a column of a
table. Oracle supports the following integrity constraints:

NOT NULL constraints for the rules associated with nulls in a column

UNIQUE key constraints for the rule associated with unique column values

PRIMARY KEY constraints for the rule associated with primary identification
values

FOREIGN KEY constraints for the rules associated with referential integrity.
Oracle supports the use of FOREIGN KEY integrity constraints to define the
referential integrity actions, including:

– Update and delete No Action

– Delete CASCADE

– Delete SET NULL

CHECK constraints for complex integrity rules

Note: You cannot enforce referential integrity using declarative
integrity constraints if child and parent tables are on different
nodes of a distributed database. However, you can enforce
referential integrity in a distributed database using database
triggers (see next section).

21-4 Oracle9i Database Concepts



Introduction to Integrity Constraints

Database Triggers
Oracle also lets you enforce integrity rules with a non-declarative approach using
database triggers (stored database procedures automatically invoked on insert,
update, or delete operations).

See Also: Chapter 17, "Triggers" for examples of triggers used to
enforce data integrity

Introduction to Integrity Constraints
Oracle uses integrity constraints to prevent invalid data entry into the base tables of
the database. You can define integrity constraints to enforce the business rules you
want to associate with the information in a database. If any of the results of a DML
statement execution violate an integrity constraint, then Oracle rolls back the
statement and returns an error.

Note: Operations on views (and synonyms for tables) are subject
to the integrity constraints defined on the underlying base tables.

For example, assume that you define an integrity constraint for the salary column
of the employees table. This integrity constraint enforces the rule that no row in
this table can contain a numeric value greater than 10,000 in this column. If an
INSERT or UPDATE statement attempts to violate this integrity constraint, then
Oracle rolls back the statement and returns an information error message.

The integrity constraints implemented in Oracle fully comply with ANSI
X3.135-1989 and ISO 9075-1989 standards.

Advantages of Integrity Constraints
This section describes some of the advantages that integrity constraints have over
other alternatives, which include:

Enforcing business rules in the code of a database application

Using stored procedures to completely control access to data

Enforcing business rules with triggered stored database procedures

See Also: Chapter 17, "Triggers"

Data Integrity 21-5



Introduction to Integrity Constraints

Declarative Ease
Define integrity constraints using SQL statements. When you define or alter a table,
no additional programming is required. The SQL statements are easy to write and
eliminate programming errors. Oracle controls their functionality. For these reasons,
declarative integrity constraints are preferable to application code and database
triggers. The declarative approach is also better than using stored procedures,
because the stored procedure solution to data integrity controls data access, but
integrity constraints do not eliminate the flexibility of ad hoc data access.

Centralized Rules
Integrity constraints are defined for tables (not an application) and are stored in the
data dictionary. Any data entered by any application must adhere to the same
integrity constraints associated with the table. By moving business rules from
application code to centralized integrity constraints, the tables of a database are
guaranteed to contain valid data, no matter which database application
manipulates the information. Stored procedures cannot provide the same advantage
of centralized rules stored with a table. Database triggers can provide this benefit,
but the complexity of implementation is far greater than the declarative approach
used for integrity constraints.

Maximum Application Development Productivity
If a business rule enforced by an integrity constraint changes, then the administrator
need only change that integrity constraint and all applications automatically adhere
to the modified constraint. In contrast, if the business rule were enforced by the
code of each database application, developers would have to modify all application
source code and recompile, debug, and test the modified applications.

Immediate User Feedback
Oracle stores specific information about each integrity constraint in the data
dictionary. You can design database applications to use this information to provide
immediate user feedback about integrity constraint violations, even before Oracle
executes and checks the SQL statement. For example, a SQL*Forms application can
use integrity constraint definitions stored in the data dictionary to check for
violations as values are entered into the fields of a form, even before the application
issues a statement.

Superior Performance
The semantics of integrity constraint declarations are clearly defined, and
performance optimizations are implemented for each specific declarative rule. The

21-6 Oracle9i Database Concepts



Types of Integrity Constraints

Oracle query optimizer can use declarations to learn more about data to improve
overall query performance. (Also, taking integrity rules out of application code and
database triggers guarantees that checks are only made when necessary.)

Flexibility for Data Loads and Identification of Integrity Violations
You can disable integrity constraints temporarily so that large amounts of data can
be loaded without the overhead of constraint checking. When the data load is
complete, you can easily enable the integrity constraints, and you can automatically
report any new rows that violate integrity constraints to a separate exceptions table.

The Performance Cost of Integrity Constraints
The advantages of enforcing data integrity rules come with some loss in
performance. In general, the cost of including an integrity constraint is, at most, the
same as executing a SQL statement that evaluates the constraint.

Types of Integrity Constraints
You can use the following integrity constraints to impose restrictions on the input of
column values:

NOT NULL Integrity Constraints

UNIQUE Key Integrity Constraints

PRIMARY KEY Integrity Constraints

Referential Integrity Constraints

CHECK Integrity Constraints

NOT NULL Integrity Constraints
By default, all columns in a table allow nulls. Null means the absence of a value. A
NOT NULL constraint requires a column of a table contain no null values. For
example, you can define a NOT NULL constraint to require that a value be input in
the last_name column for every row of the employees table.

Figure 21– 2 illustrates a NOT NULL integrity constraint.

Data Integrity 21-7



Types of Integrity Constraints

Figure 21– 2

Table EMP 

NOT NULL Integrity Constraints

EMPNO

7329
7499
7521
7566

ENAME

SMITH
ALLEN
WARD
JONES

JOB

CEO
VP_SALES
MANAGER
SALESMAN

MGR

7329
7499
7521

HIREDATE

17–DEC–85
20–FEB–90
22–FEB–90
02–APR–90

SAL

9,000.00
7,500.00
5,000.00
2,975.00

COMM

100.00
200.00
400.00

DEPTNO

20
30
30
30

Absence of NOT 
NULL Constraint 
(any row can contain 
null for this column) 

NOT NULL CONSTRAINT 
(no row may contain a null 
value for this column) 

UNIQUE Key Integrity Constraints
A UNIQUE key integrity constraint requires that every value in a column or set of
columns (key) be unique— that is, no two rows of a table have duplicate values in a
specified column or set of columns.

For example, in Figure 21– 3 a UNIQUE key constraint is defined on the DNAME
column of the departments table to disallow rows with duplicate department
names.

21-8 Oracle9i Database Concepts



Types of Integrity Constraints

Figure 21– 3 A UNIQUE Key Constraint

UNIQUE Key Constraint 
(no row may duplicate a value 
in the constraint's column) 

Table DEPT 
DEPTNO DNAME LOC

20
30
40

RESEARCH
SALES
MARKETING

DALLAS
NEW YORK 
BOSTON

50

60

SALES NEW YORK 

BOSTON

INSERT
INTO

This row violates the UNIQUE key constraint, 
because "SALES" is already present in another 
row; therefore, it is not allowed in the table. 

This row is allowed because a null value is 
entered for the DNAME column; however, if a 
NOT NULL constraint is also defined on the 
DNAME column, this row is not allowed. 

Unique Keys
The columns included in the definition of the UNIQUE key constraint are called the
unique key. Unique key is often incorrectly used as a synonym for the terms
UNIQUE key constraint or UNIQUE index. However, note that key refers only to
the column or set of columns used in the definition of the integrity constraint.

If the UNIQUE key consists of more than one column, that group of columns is said
to be a composite unique key. For example, in Figure 21– 4 the customer table has
a UNIQUE key constraint defined on the composite unique key: the area and
phone columns.

Data Integrity 21-9



Types of Integrity Constraints

Figure 21– 4 A Composite UNIQUE Key Constraint

Composite UNIQUE 
Key Constraint 
(no row may duplicate 
a set of values 
in the key) 

PHONE

506– 7000
506– 7000
341– 8100

Table CUSTOMER 

CUSTNO

230
245
257

CUSTNAME

OFFICE SUPPLIES 
ORACLE CORP 
INTERNAL SYSTEMS 

... Other Columns ... AREA

303
415
303

INSERT
INTO

This row is allowed because a null 
value is entered for the AREA 
column; however, if a NOT NULL 
constraint is also defined on the 
AREA column, then this row is 
not allowed. 

268

270

AEA CONSTRUCTION 415 506– 7000

WW MANUFACTURING 506– 7000

This row violates the UNIQUE key 
constraint, because "415/506-7000" 
is already present in another row; 
therefore, it is not allowed in the table

This UNIQUE key constraint lets you enter an area code and telephone number any
number of times, but the combination of a given area code and given telephone
number cannot be duplicated in the table. This eliminates unintentional duplication
of a telephone number.

UNIQUE Key Constraints and Indexes
Oracle enforces unique integrity constraints with indexes. For example, in
Figure 21– 4, Oracle enforces the UNIQUE key constraint by implicitly creating a
unique index on the composite unique key. Therefore, composite UNIQUE key
constraints have the same limitations imposed on composite indexes: up to 32
columns can constitute a composite unique key.

21-10 Oracle9i Database Concepts



Types of Integrity Constraints

Note: If compatibility is set to Oracle9i or higher, then the total
size in bytes of a key value can be almost as large as a full block. In
previous releases key size could not exceed approximately half the
associated database’s block size.

If a usable index exists when a unique key constraint is created, the constraint uses
that index rather than implicitly creating a new one.

Combine UNIQUE Key and NOT NULL Integrity Constraints
In Figure 21– 3 and Figure 21– 4, UNIQUE key constraints allow the input of nulls
unless you also define NOT NULL constraints for the same columns. In fact, any
number of rows can include nulls for columns without NOT NULL constraints
because nulls are not considered equal to anything. A null in a column (or in all
columns of a composite UNIQUE key) always satisfies a UNIQUE key constraint.

Columns with both unique keys and NOT NULL integrity constraints are common.
This combination forces the user to enter values in the unique key and also
eliminates the possibility that any new row’s data will ever conflict with an existing
row’s data.

Note: Because of the search mechanism for UNIQUE constraints on
more than one column, you cannot have identical values in the
non-null columns of a partially null composite UNIQUE key
constraint.

PRIMARY KEY Integrity Constraints
Each table in the database can have at most one PRIMARY KEY constraint. The
values in the group of one or more columns subject to this constraint constitute the
unique identifier of the row. In effect, each row is named by its primary key values.

The Oracle implementation of the PRIMARY KEY integrity constraint guarantees that
both of the following are true:

No two rows of a table have duplicate values in the specified column or set of
columns.

The primary key columns do not allow nulls. That is, a value must exist for the
primary key columns in each row.

Data Integrity 21-11



Types of Integrity Constraints

Primary Keys
The columns included in the definition of a table’s PRIMARY KEY integrity
constraint are called the primary key. Although it is not required, every table should
have a primary key so that:

Each row in the table can be uniquely identified

No duplicate rows exist in the table

Figure 21– 5 illustrates a PRIMARY KEY constraint in the departments table and
examples of rows that violate the constraint.

Figure 21– 5 A Primary Key Constraint

PRIMARY KEY 
(no row may duplicate a value in the 
key and no null values are allowed) 

INSERT
INTO

Table DEPT 
DEPTNO DNAME LOC

20
30

RESEARCH
SALES

DALLAS
CHICAGO

20 MARKETING

FINANCE

DALLAS

NEW YORK 

This row is not allowed because "20" duplicates 
an existing value in the primary key. 

This row is not allowed because it contains 
a null value for the primary key. 

PRIMARY KEY Constraints and Indexes
Oracle enforces all PRIMARY KEY constraints using indexes. In Figure 21– 5, the
primary key constraint created for the department_id column is enforced by the
implicit creation of:

A unique index on that column

A NOT NULL constraint for that column

21-12 Oracle9i Database Concepts





Types of Integrity Constraints

Figure 21– 6 Referential Integrity Constraints

Parent Key 
Primary key of 
referenced table 

Foreign Key 
(values in dependent 
table must match a 
value in unique key 

Referenced or or primary key of 
Parent Table referenced table) 

Table DEPT 
DEPTNO DNAME LOC

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

Table EMP 

Dependent or Child Table 

20
30

RESEARCH
SALES

DALLAS
CHICAGO

7329
7499
7521
7566

SMITH
ALLEN
WARD
JONES

CEO
VP– SALES
MANAGER
SALESMAN

7329
7499
7521

17– DEC– 85
20– FEB– 90
22– FEB– 90
02– APR– 90

9,000.00
300.00
500.00

100.00
200.00
400.00

20
30
30
20

This row violates the referential 
constraint because "40" is not 
present in the referenced table's 
primary key; therefore, the row

INSERT
INTO is not allowed in the table. 

7571

7571

FORD

FORD

MANAGER

MANAGER

7499

7499

23– FEB– 90

23– FEB– 90

5,000.00 200.00 40

5,000.00 200.00

This row is allowed in the table 
because a null value is entered 
in the DEPTNO column; 
however, if a not null constraint 
is also defined for this column, 
this row is not allowed. 

Self-Referential Integrity Constraints
Another type of referential integrity constraint, shown in Figure 21– 7, is called a
self-referential integrity constraint. This type of foreign key references a parent key

21-14 Oracle9i Database Concepts



Types of Integrity Constraints

in the same table.

In Figure 21– 7, the referential integrity constraint ensures that every value in the
manager_id column of the employees table corresponds to a value that currently
exists in the employee_id column of the same table, but not necessarily in the
same row, because every manager must also be an employee. This integrity
constraint eliminates the possibility of erroneous employee numbers in the
manager_id column.

Figure 21– 7 Single Table Referential Constraints

Primary Key 
of referenced table 

Referenced or 
Parent Table 

Table EMP 

EMPNO ENAME

7329 SMITH
7499 ALLEN
7521 WARD
7566 JONES

Foreign Key 
(values in dependent table must match a value in 
unique key or primary key of referenced table) 

Dependent or 
Child Table 

JOB

CEO
VP– SALES
MANAGER
SALESMAN

MGR

7329
7329
7499
7521

HIREDATE SAL

9,000.00
7,500.00
5,000.00
2,975.00

COMM

100.00
200.00
400.00

DEPTNO

20
30
30
30

7571 FORD MANAGER 7331 23– FEB– 90 5,000.00 200.00 30

INSERT
INTO

This row violates the referential 
constraint, because "7331" is 
not present in the referenced 
table's primary key; therefore, 
it is not allowed in the table. 

Nulls and Foreign Keys
The relational model permits the value of foreign keys either to match the
referenced primary or unique key value, or be null. If any column of a composite
foreign key is null, then the non-null portions of the key do not have to match any
corresponding portion of a parent key.

Data Integrity 21-15



Types of Integrity Constraints

Actions Defined by Referential Integrity Constraints
Referential integrity constraints can specify particular actions to be performed on
the dependent rows in a child table if a referenced parent key value is modified. The
referential actions supported by the FOREIGN KEY integrity constraints of Oracle
are UPDATE and DELETE NO ACTION, and DELETE CASCADE.

Note: Other referential actions not supported by FOREIGN KEY
integrity constraints of Oracle can be enforced using database
triggers.

See Chapter 17, "Triggers" for more information.

Update and Delete No Action The No Action (default) option specifies that referenced
key values cannot be updated or deleted if the resulting data would violate a
referential integrity constraint. For example, if a primary key value is referenced by
a value in the foreign key, then the referenced primary key value cannot be deleted
because of the dependent data.

Delete Cascade A delete cascades when rows containing referenced key values are
deleted, causing all rows in child tables with dependent foreign key values to also
be deleted. For example, if a row in a parent table is deleted, and this row’s primary
key value is referenced by one or more foreign key values in a child table, then the
rows in the child table that reference the primary key value are also deleted from
the child table.

Delete Set Null A delete sets null when rows containing referenced key values are
deleted, causing all rows in child tables with dependent foreign key values to set
those values to null. For example, if employee_id references manager_id in the
TMP table, then deleting a manager causes the rows for all employees working for
that manager to have their manager_id value set to null.

21-16 Oracle9i Database Concepts



Types of Integrity Constraints

DML Restrictions with Respect to Referential Actions Table 21– 1 outlines the DML
statements allowed by the different referential actions on the primary/unique key
values in the parent table, and the foreign key values in the child table.

Table 21– 1 DML Statements Allowed by Update and Delete No Action

DML Statement Issued Against Parent Table Issued Against Child Table

INSERT Always OK if the parent key value is OK only if the foreign key
unique. value exists in the parent key

or is partially or all null.

UPDATE No Action Allowed if the statement does not Allowed if the new foreign
leave any rows in the child table key value still references a
without a referenced parent key referenced key value.
value.

DELETE No Action Allowed if no rows in the child table Always OK.
reference the parent key value.

DELETE Cascade Always OK. Always OK.

DELETE Set Null Always OK. Always OK.

Concurrency Control, Indexes, and Foreign Keys
You almost always index foreign keys. The only exception is when the matching
unique or primary key is never updated or deleted.

Oracle maximizes the concurrency control of parent keys in relation to dependent
foreign key values. You can control what concurrency mechanisms are used to
maintain these relationships, and, depending on the situation, this can be highly
beneficial. The following sections explain the possible situations and give
recommendations for each.

No Index on the Foreign Key Figure 21– 8 illustrates the locking mechanisms used by
Oracle when no index is defined on the foreign key and when rows are being
updated or deleted in the parent table. Inserts into the parent table do not require
any locks on the child table.

Oracle no longer requires a share lock on unindexed foreign keys when doing an
update or delete on the primary key. It still obtains the table-level share lock, but
then releases it immediately after obtaining it. If multiple primary keys are update
or deleted, the lock is obtained and released once for each row.

In previous releases, a share lock of the entire child table was required until the
transaction containing the DELETE statement for the parent table was committed. If
the foreign key specifies ON DELETE CASCADE, then the DELETE statement resulted

Data Integrity 21-17



Types of Integrity Constraints

in a table-level share-subexclusive lock on the child table. A share lock of the entire
child table was also required for an UPDATE statement on the parent table that
affected any columns referenced by the child table. Share locks allow reading only.
Therefore, no INSERT, UPDATE, or DELETE statements could be issued on the child
table until the transaction containing the UPDATE or DELETE was committed.
Queries were allowed on the child table.

INSERT, UPDATE, and DELETE statements on the child table do not acquire any
locks on the parent table, although INSERT and UPDATE statements wait for a
row-lock on the index of the parent table to clear.

21-18 Oracle9i Database Concepts



Types of Integrity Constraints

Figure 21– 8 Locking Mechanisms When No Index Is Defined on the Foreign Key

Row 1 Key 1 

Table Parent 

Row 2 Key 2 

Row 4 Key 4 

Key 1 

Index

Key 2 

Key 4 

Key 3Row 3 Key 3 

Row 1 Key 1 

Table Child 

Row 2 Key 1 
Row 3 Key 3 

Row 4 Key 2 

Row 5 Key 2 

Share lock acquired 

Exclusive row lock acquired 

Newly updated row 

Index on the Foreign Key Figure 21– 9 illustrates the locking mechanisms used by
Oracle when an index is defined on the foreign key, and new rows are inserted,
updated, or deleted in the child table.

Notice that no table locks of any kind are acquired on the parent table or any of its
indexes as a result of the insert, update, or delete. Therefore, any type of DML
statement can be issued on the parent table, including inserts, updates, deletes, and
queries.

This situation is preferable if there is any update or delete activity on the parent
table while update activity is taking place on the child table. Inserts, updates, and
deletes on the parent table do not require any locks on the child table, although

Data Integrity 21-19



Types of Integrity Constraints

updates and deletes will wait for row-level locks on the indexes of the child table to
clear.

Figure 21– 9 Locking Mechanisms When Index Is Defined on the Foreign Key

Row 1 Key 1 

Table Parent 

Row 2 Key 2 

Row 3 Key 3 

Row 4 Key 4 

Table Child 

Key 1 

Index

Key 2 
Key 3 

Key 4 

Key 1 

Index

Key 1 
Key 2 

Key 3 

Key 2 

Row 1 Key 1 

Row 2 Key 1 
Row 3 Key 3 

Row 4 Key 2 

Row 5 Key 2 

Exclusive row lock acquired 

Newly updated row 

If the child table specifies ON DELETE CASCADE, then deletes from the parent table
can result in deletes from the child table. In this case, waiting and locking rules are
the same as if you deleted yourself from the child table after performing the delete
from the parent table.

CHECK Integrity Constraints
A CHECK integrity constraint on a column or set of columns requires that a specified
condition be true or unknown for every row of the table. If a DML statement results

21-20 Oracle9i Database Concepts



The Mechanisms of Constraint Checking

in the condition of the CHECK constraint evaluating to false, then the statement is
rolled back.

The Check Condition
CHECK constraints enable you to enforce very specific integrity rules by specifying a
check condition. The condition of a CHECK constraint has some limitations:

It must be a Boolean expression evaluated using the values in the row being
inserted or updated, and

It cannot contain subqueries; sequences; the SQL functi

SYSDATE, UID, USER, or USERENV; or the pseudocolumns LEVEL or ROWNUM.

In evaluating CHECK constraints that contain string literals or SQL functions with
globalization support parameters as arguments (such as TO_CHAR, TO_DATE, and
TO_NUMBER), Oracle uses the database globalization support settings by default.
You can override the defaults by specifying globalization support parameters
explicitly in such functions within the CHECK constraint definition.

See Also: Oracle9i Database Globalization Support Guide for more
information on globalization support features

Multiple CHECK Constraints
A single column can have multiple CHECK constraints that reference the column in
its definition. There is no limit to the number of CHECK constraints that you can
define on a column.

If you create multiple CHECK constraints for a column, design them carefully so
their purposes do not conflict. Do not assume any particular order of evaluation of
the conditions. Oracle does not verify that CHECK conditions are not mutually
exclusive.

The Mechanisms of Constraint Checking
To know what types of actions are permitted when constraints are present, it is
useful to understand when Oracle actually performs the checking of constraints. To
illustrate this, an example or two is helpful. Assume the following:

The employees table has been defined as in Figure 21– 7 on page 21-15.

The self-referential constraint makes the entries in the manager_id column
dependent on the values of the employee_id column. For simplicity, the rest

Data Integrity 21-21



The Mechanisms of Constraint Checking

of this discussion addresses only the employee_id and manager_id columns
of the employees table.

Consider the insertion of the first row into the employees table. No rows currently
exist, so how can a row be entered if the value in the manager_id column cannot
reference any existing value in the employee_id column? Three possibilities for
doing this are:

A null can be entered for the manager_id column of the first row, assuming
that the manager_id column does not have a NOT NULL constraint defined
on it. Because nulls are allowed in foreign keys, this row is inserted successfully
into the table.

The same value can be entered in both the employee_id and manager_id
columns. This case reveals that Oracle performs its constraint checking after the
statement has been completely executed. To allow a row to be entered with the
same values in the parent key and the foreign key, Oracle must first execute the
statement (that is, insert the new row) and then check to see if any row in the
table has an employee_id that corresponds to the new row’s manager_id.

A multiple row INSERT statement, such as an INSERT statement with nested
SELECT statement, can insert rows that reference one another. For example, the
first row might have employee_id as 200 and manager_id as 300, while the
second row might have employee_id as 300 and manager_id as 200.

This case also shows that constraint checking is deferred until the complete
execution of the statement. All rows are inserted first, then all rows are checked
for constraint violations. You can also defer the checking of constraints until the
end of the transaction.

Consider the same self-referential integrity constraint in this scenario. The company
has been sold. Because of this sale, all employee numbers must be updated to be the
current value plus 5000 to coordinate with the new company’s employee numbers.
Because manager numbers are really employee numbers, these values must also
increase by 5000 (see Figure 21– 10).

21-22 Oracle9i Database Concepts



The Mechanisms of Constraint Checking

Figure 21–10 The EMP Table Before Updates

EMPNO MGR

210
211
212

210
211

UPDATE employees
SET employee_id = employee_id + 5000,

manager_id = manager_id + 5000;

Even though a constraint is defined to verify that each manager_id value matches
an employee_id value, this statement is legal because Oracle effectively performs
its constraint checking after the statement completes. Figure 21– 11 shows that
Oracle performs the actions of the entire SQL statement before any constraints are
checked.

Figure 21–11 Constraint Checking

EMPNO MGR EMPNO MGR EMPNO MGR

5210
211
212

210
211

5210
5211
5212

5210
52115210

211

5210
5211
212

Update to Update to Update to Constraints
second row second row third row checked

The examples in this section illustrate the constraint checking mechanism during
INSERT and UPDATE statements. The same mechanism is used for all types of DML
statements, including UPDATE, INSERT, and DELETE statements.

The examples also used self-referential integrity constraints to illustrate the
checking mechanism. The same mechanism is used for all types of constraints,
including the following:

NOT NULL

UNIQUE key

PRIMARY KEY

Data Integrity 21-23



Deferred Constraint Checking

All types of FOREIGN KEY constraints

CHECK constraints

See Also: "Deferred Constraint Checking" on page 21-24

Default Column Values and Integrity Constraint Checking
Default values are included as part of an INSERT statement before the statement is
parsed. Therefore, default column values are subject to all integrity constraint
checking.

Deferred Constraint Checking
You can defer checking constraints for validity until the end of the transaction.

A constraint is deferred if the system checks that it is satisfied only on commit.
If a deferred constraint is violated, then commit causes the transaction to roll
back.

If a constraint is immediate (not deferred), then it is checked at the end of each
statement. If it is violated, the statement is rolled back immediately.

If a constraint causes an action (for example, delete cascade), that action is always
taken as part of the statement that caused it, whether the constraint is deferred or
immediate.

Constraint Attributes
You can define constraints as either deferrable or not deferrable, and either
initially deferred or initially immediate. These attributes can be different for each
constraint. You specify them with keywords in the CONSTRAINT clause:

DEFERRABLE or NOT DEFERRABLE

INITIALLY DEFERRED or INITIALLY IMMEDIATE

Constraints can be added, dropped, enabled, disabled, or validated. You can also
modify a constraint’s attributes.

21-24 Oracle9i Database Concepts



Deferred Constraint Checking

See Also:

Oracle9i SQL Reference for information about constraint
attributes and their default values

"Constraint States" on page 21-26

"Constraint State Modification" on page 21-27

SET CONSTRAINTS Mode
The SET CONSTRAINTS statement makes constraints either DEFERRED or
IMMEDIATE for a particular transaction (following the ANSI SQL92 standards in
both syntax and semantics). You can use this statement to set the mode for a list of
constraint names or for ALL constraints.

The SET CONSTRAINTS mode lasts for the duration of the transaction or until
another SET CONSTRAINTS statement resets the mode.

SET CONSTRAINTS ... IMMEDIATE causes the specified constraints to be checked
immediately on execution of each constrained statement. Oracle first checks any
constraints that were deferred earlier in the transaction and then continues
immediately checking constraints of any further statements in that transaction, as
long as all the checked constraints are consistent and no other SET CONSTRAINTS
statement is issued. If any constraint fails the check, an error is signaled. At that
point, a COMMIT causes the whole transaction to roll back.

The ALTER SESSION statement also has clauses to SET CONSTRAINTS IMMEDIATE
or DEFERRED. These clauses imply setting ALL deferrable constraints (that is, you
cannot specify a list of constraint names). They are equivalent to making a SET
CONSTRAINTS statement at the start of each transaction in the current session.

Making constraints immediate at the end of a transaction is a way of checking
whether COMMIT can succeed. You can avoid unexpected rollbacks by setting
constraints to IMMEDIATE as the last statement in a transaction. If any constraint
fails the check, you can then correct the error before committing the transaction.

The SET CONSTRAINTS statement is disallowed inside of triggers.

SET CONSTRAINTS can be a distributed statement. Existing database links that have
transactions in process are told when a SET CONSTRAINTS ALL statement occurs,
and new links learn that it occurred as soon as they start a transaction.

Data Integrity 21-25



Constraint States

Unique Constraints and Indexes
A user sees inconsistent constraints, including duplicates in unique indexes, when
that user’s transaction produces these inconsistencies.

You can place deferred unique and foreign key constraints on materialized views,
allowing fast and complete refresh to complete successfully.

Deferrable unique constraints always use nonunique indexes. When you remove a
deferrable constraint, its index remains. This is convenient because the storage
information remains available after you disable a constraint. Not-deferrable unique
constraints and primary keys also use a nonunique index if the nonunique index is
placed on the key columns before the constraint is enforced.

Constraint States
You can enable or disable integrity constraints at the table level using the CREATE
TABLE or ALTER TABLE statement. You can also set constraints to VALIDATE or
NOVALIDATE, in any combination with ENABLE or DISABLE, where:

ENABLE ensures that all incoming data conforms to the constraint

DISABLE allows incoming data, regardless of whether it conforms to the
constraint

VALIDATE ensures that existing data conforms to the constraint

NOVALIDATE means that some existing data may not conform to the constraint

In addition:

ENABLE VALIDATE is the same as ENABLE. The constraint is checked and is
guaranteed to hold for all rows.

ENABLE NOVALIDATE means that the constraint is checked, but it does not have
to be true for all rows. This allows existing rows to violate the constraint, while
ensuring that all new or modified rows are valid.

In an ALTER TABLE statement, ENABLE NOVALIDATE resumes constraint
checking on disabled constraints without first validating all data in the table.

DISABLE NOVALIDATE is the same as DISABLE. The constraint is not checked
and is not necessarily true.

DISABLE VALIDATE disables the constraint, drops the index on the constraint,
and disallows any modification of the constrained columns.

21-26 Oracle9i Database Concepts



Constraint States

For a UNIQUE constraint, the DISABLE VALIDATE state enables you to load
data efficiently from a nonpartitioned table into a partitioned table using the
EXCHANGE PARTITION clause of the ALTER TABLE statement.

Transitions between these states are governed by the following rules:

ENABLE implies VALIDATE, unless NOVALIDATE is specified.

DISABLE implies NOVALIDATE, unless VALIDATE is specified.

VALIDATE and NOVALIDATE do not have any default implications for the
ENABLE and DISABLE states.

When a unique or primary key moves from the DISABLE state to the ENABLE
state, if there is no existing index, a unique index is automatically created.
Similarly, when a unique or primary key moves from ENABLE to DISABLE and
it is enabled with a unique index, the unique index is dropped.

When any constraint is moved from the NOVALIDATE state to the VALIDATE
state, all data must be checked. (This can be very slow.) However, moving from
VALIDATE to NOVALIDATE simply forgets that the data was ever checked.

Moving a single constraint from the ENABLE NOVALIDATE state to the ENABLE
VALIDATE state does not block reads, writes, or other DDL statements. It can be
done in parallel.

See Also: Oracle9i Database Administrator’s Guide for more
information about how to use the ENABLE, DISABLE, VALIDATE,
and NOVALIDATE CONSTRAINT clauses.

Constraint State Modification
You can use the MODIFY CONSTRAINT clause of the ALTER TABLE statement to
change the following constraint states:

DEFERRABLE or NOT DEFERRABLE

INITIALLY DEFERRED or INITIALLY IMMEDIATE

RELY or NORELY

USING INDEX ...

ENABLE or DISABLE

VALIDATE or NOVALIDATE

EXCEPTIONS INTO ...

Data Integrity 21-27



Constraint States

See Also: Oracle9i SQL Reference for information about these
constraint states

21-28 Oracle9i Database Concepts



22
Controlling Database Access

This chapter explains how to control access to an Oracle database. It includes the
following sections:

Introduction to Database Security

Schemas, Database Users, and Security Domains

User Authentication

Oracle Internet Directory

User Tablespace Settings and Quotas

The User Group PUBLIC

User Resource Limits and Profiles

Controlling Database Access 22-1



Introduction to Database Security

Introduction to Database Security
Database security entails allowing or disallowing user actions on the database and
the objects within it. Oracle uses schemas and security domains to control access to
data and to restrict the use of various database resources.

Oracle provides comprehensive discretionary access control. Discretionary access
control regulates all user access to named objects through privileges. A privilege is
permission to access a named object in a prescribed manner; for example,
permission to query a table. Privileges are granted to users at the discretion of other
users— hence the term discretionary access control.

See Also: Chapter 23, "Privileges, Roles, and Security Policies"

Schemas, Database Users, and Security Domains
A user (sometimes called a username) is a name defined in the database that can
connect to and access objects. A schema is a named collection of objects, such as
tables, views, clusters, procedures, and packages. Schemas and users help database
administrators manage database security.

Enterprise users are managed in a directory and can be given access to multiple
schemas and databases without having to create an account or schema in each
database. This arrangement is simpler for users and for DBAs and also offers better
security because their privileges can be altered in one place.

When creating a new database user or altering an existing one, the security
administrator must make several decisions concerning a user’s security domain.
These include:

Whether user authentication information is maintained by the database, the
operating system, or a network authentication service

Settings for the user’s default and temporary tablespaces

A list of tablespaces accessible to the user, if any, and the associated quotas for
each listed tablespace

The user’s resource limit profile; that is, limits on the amount of system
resources available to the user

The privileges, roles, and security policies that provide the user with
appropriate access to schema objects needed to perform database operations

This chapter describes the first four security domain options listed.

22-2 Oracle9i Database Concepts



User Authentication

Note: The information in this chapter applies to all user-defined
database users. It does not apply to the special database users SYS
and SYSTEM. Settings for these users’ security domains should
never be altered.

See Also:

Chapter 23, "Privileges, Roles, and Security Policies"

Oracle Advanced Security Administrator’s Guide for more
information about enterprise users

Oracle9i Database Administrator’s Guide for more information
about the special users SYS and SYSTEM, and for information
about security administrators

User Authentication
To prevent unauthorized use of a database username, Oracle provides user
validation through several different methods for normal database users. You can
perform authentication by:

The operating system

A network service

The associated Oracle database

The Oracle database of a middle-tier application that performs transactions on
behalf of the user

The Secure Socket Layer (SSL) protocol

For simplicity, one method is usually used to authenticate all users of a database.
However, Oracle allows use of all methods within the same database instance.

Oracle also encrypts passwords during transmission to ensure the security of
network authentication.

Oracle requires special authentication procedures for database administrators,
because they perform special database operations.

Controlling Database Access 22-3



User Authentication

Authentication by the Operating System
Some operating systems permit Oracle to use information maintained by the
operating system to authenticate users. The benefits of authentication by the
operating system are:

Users can connect to Oracle more conveniently, without specifying a username
or password. For example, a user can invoke SQL*Plus and skip the username
and password prompts by entering

SQLPLUS /

Control over user authorization is centralized in the operating system. Oracle
need not store or manage user passwords. However, Oracle still maintains
usernames in the database.

Username entries in the database and operating system audit trails correspond.

If the operating system is used to authenticate database users, some special
considerations arise with respect to distributed database environments and
database links.

See Also:

Oracle9i Database Administrator’s Guide

Your Oracle operating system-specific documentation for more
information about authenticating by way of your operating
system

Authentication by the Network
Oracle supports the following methods of authentication by the network.

Third Party-Based Authentication Technologies
If network authentication services are available to you (such as DCE, Kerberos, or
SESAME), Oracle can accept authentication from the network service. To use a
network authentication service with Oracle, you need Oracle9i Enterprise Edition
with the Oracle Advanced Security option.

22-4 Oracle9i Database Concepts



User Authentication

See Also:

Oracle9i Database Administrator’s Guide for more information
about network authentication. If you use a network
authentication service, some special considerations arise for
network roles and database links.

Oracle Advanced Security Administrator’s Guide for information
about the Oracle Advanced Security option

Public Key Infrastructure-Based Authentication
Authentication systems based on public key cryptography systems issue digital
certificates to user clients, which use them to authenticate directly to servers in the
enterprise without direct involvement of an authentication server. Oracle provides a
public key infrastructure (PKI) for using public keys and certificates. It consists of
the following components:

Authentication and secure session key management using Secure Sockets Layer
(SSL).

Oracle Call Interface (OCI) and PL/SQL functions to sign user-specified data
using a private key and certificate, and verify the signature on data using a
trusted certificate.

A trusted certificate, which is a third-party identity that is trusted. The trust is
used when an identity is being validated as the entity it claims to be. Typically,
the certificate authorities you trust issue user certificates. If there are several
levels of trusted certificates, a trusted certificate at a lower level in the certificate
chain does not need to have all its higher level certificates reverified.

Oracle wallets, which are data structures that contain a user private key, a user
certificate, and a set of trust points (the list of root certificates the user trusts).

Oracle Wallet Manager, which is a standalone Java application used to manage
and edit the security credentials in Oracle wallets. Wallet Manager:

Protects user keys

Manages X.509v3 certificates on Oracle clients and servers

Generates a public-private key pair and creates a certificate request for
submission to a certificate authority

Installs a certificate for the entity

Configures trusted certificates for the entity

Controlling Database Access 22-5



User Authentication

Opens a wallet to enable access to PKI-based services

Creates a wallet that can be opened using the Oracle Enterprise Login
Assistant

X.509v3 certificates that you obtain from a certificate authority outside of
Oracle. It is created when an entity’s public key is signed by a trusted entity (a
certificate authority outside of Oracle). The certificate ensures that the entity’s
information is correct and the public key belongs to the entity. The certificates
are loaded into Oracle wallets to enable authentication.

Oracle Enterprise Security Manager, which provides centralized privilege
management to make administration easier and increase your level of security.
Oracle Enterprise Security Manager lets you store and retrieve roles from Oracle
Internet Directory if the roles support the Lightweight Directory Access
Protocol (LDAP). Oracle Enterprise Security Manager may also allow you to
store roles in other LDAP v3-compliant directory servers if they can support the
installation of the Oracle schema and related Access Control Lists.

Oracle Internet Directory, which is an LDAP v3-compliant directory built on
the Oracle9i database. It lets you manage the user and system configuration
environment, including security attributes and privileges, for users
authenticated using X.509 certificates. Oracle Internet Directory enforces
attribute-level access control, allowing the directory to restrict read, write, or
update privileges on specific attributes to specific named users (for example, an
enterprise security administrator). It also supports protection and
authentication of directory queries and responses through SSL encryption.

Oracle Enterprise Login Assistant, which is a Java-based tool for opening and
closing a user wallet in order to enable or disable secure SSL-based
communications for an application. This tool provides a subset of the
functionality proved by Oracle Wallet Manager. The wallet must be configured
with Oracle Wallet Manager first.

Oracle’s public key infrastructure is illustrated in Figure 22– 1.

22-6 Oracle9i Database Concepts



User Authentication

Figure 22–1 Oracle Public Key Infrastructure

Oracle Enterprise
Security Manager

Manages enterprise 
users and 

enterprise roles 

Wallet

Oracle
Internet

Directory

Wallet

Stores users, roles, 
databases,

configuration
information,

ACLs

Oracle Wallet
Manager

Creates keys and 
manages credential 

preferences

LDAP on SSL 

Oracle9i
Server

Wallet

Oracle Net Services, 
over SSL 

Oracle9i
Server

Wallet

LDAP on SSL 

Note: To use public key infrastructure-based authentication with
Oracle, you need Oracle9i Enterprise Edition with the Oracle
Advanced Security option.

Remote Authentication
Oracle supports remote authentication of users through Remote Dial-In User
Service (RADIUS), a standard lightweight protocol used for user authentication,
authorization, and accounting.

Note: To use remote authentication of users through RADIUS
with Oracle, you need Oracle9i Enterprise Edition with the
Advanced Security option.

Controlling Database Access 22-7



User Authentication

See Also: Oracle Advanced Security Administrator’s Guide for
information about Oracle Advanced Security

Authentication by the Oracle Database
Oracle can authenticate users attempting to connect to a database by using
information stored in that database.

When Oracle uses database authentication, you create each user with an associated
password. A user provides the correct password when establishing a connection to
prevent unauthorized use of the database. Oracle stores a user’s password in the
data dictionary in an encrypted format. A user can change his or her password at
any time.

Password Encryption While Connecting
To protect password confidentiality, Oracle lets you encrypt passwords during
network (client/server and server/server) connections. If you enable this
functionality on the client and server machines, Oracle encrypts passwords using a
modified DES (Data Encryption Standard) algorithm before sending them across
the network. It is strongly recommended that you enable password encryption for
connections to protect your passwords from network intrusion.

See Also: Oracle9i Database Administrator’s Guide for more
information about encrypting passwords in network systems

Account Locking
Oracle can lock a user’s account if the user fails to login to the system within a
specified number of attempts. Depending on how the account is configured, it can
be unlocked automatically after a specified time interval or it must be unlocked by
the database administrator.

The CREATE PROFILE statement configures the number of failed logins a user can
attempt and the amount of time the account remains locked before automatic
unlock.

The database administrator can also lock accounts manually. When this occurs, the
account cannot be unlocked automatically but must be unlocked explicitly by the
database administrator.

See Also: "Profiles" on page 22-20

22-8 Oracle9i Database Concepts



User Authentication

Password Lifetime and Expiration
Password lifetime and expiration options allow the database administrator to
specify a lifetime for passwords, after which time they expire and must be changed
before a login to the account can be completed. On first attempt to login to the
database account after the password expires, the user’s account enters the grace
period, and a warning message is issued to the user every time the user tries to
login until the grace period is over.

The user is expected to change the password within the grace period. If the
password is not changed within the grace period, the account is locked and no
further logins to that account are allowed without assistance by the database
administrator.

The database administrator can also set the password state to expired. When this
happens, the user’s account status is changed to expired, and the user or the
database administrator must change the password before the user can log in to the
database.

Password History
The password history option checks each newly specified password to ensure that a
password is not reused for the specified amount of time or for the specified number
of password changes. The database administrator can configure the rules for
password reuse with CREATE PROFILE statements.

Password Complexity Verification
Complexity verification checks that each password is complex enough to provide
reasonable protection against intruders who try to break into the system by
guessing passwords.

The Oracle default password complexity verification routine requires that each
password:

Be a minimum of four characters in length

Not equal the userid

Include at least one alphabet character, one numeric character, and one
punctuation mark

Not match any word on an internal list of simple words like welcome, account,
database, user, and so on

Differ from the previous password by at least three characters

Controlling Database Access 22-9



User Authentication

Multitier Authentication and Authorization
In a multitier environment, Oracle controls the security of middle-tier applications
by limiting their privileges, preserving client identities through all tiers, and
auditing actions taken on behalf of clients. In applications that use a heavy middle
tier, such as a transaction processing monitor, it is important to be able to preserve
the identity of the client connecting to the middle tier. Yet one advantage of a
middle tier is connection pooling, which allows multiple users to access a data
server without each of them needing a separate connection. In such environments,
you need to be able to set up and break down connections very quickly. For these
environments, Oracle offers the creation of lightweight sessions through the Oracle
Call Interface. These lightweight sessions allow each user to be authenticated by a
database password without the overhead of a separate database connection, as well
as preserving the identity of the real user through the middle tier.

You can create lightweight sessions with or without passwords. If a middle tier is
outside or on a firewall, it would be appropriate to establish the lightweight session
with passwords for each lightweight user session. For an internal application server,
it might be appropriate to create a lightweight session that does not require
passwords.

Clients, Application Servers, and Database Servers
In a multitier architecture environment, an application server provides data for
clients and serves as an interface between clients and one or more database servers.

This architecture lets you use an application server to validate the credentials of a
client, such as a web browser. In addition, the database server can audit operations
performed by the application server and operations performed by the application
server on behalf of the client. For example, an operation performed by the
application server on behalf of the client might be a request for information to be
displayed on the client whereas an operation performed by the application server
might be a request for a connection to the database server.

Authentication in a multitier environment is based on trust regions, including the
following:

The client provides proof of authentication to the application server, typically
using a password or an X.509 certificate.

The application server verifies the client authentication and then authenticates
itself to the database server.

22-10 Oracle9i Database Concepts



User Authentication

The database server checks the application server authentication, verifies that
the client exists, and verifies that the application server has the privilege to
connect for this client.

Application servers can also enable roles for the client on whose behalf it is
connecting. The application server can obtain these roles from a directory, which
thus serves as an authorization repository. The application server can only request
that these roles be enabled. The database verifies that:

The client has these roles by checking its internal role repository.

The application server has the privilege to connect on behalf of the user, using
these roles for the user.

Figure 22– 2 shows an example of multitier authentication.

Figure 22–2 Multitier Authentication

SSL to login Proxies user identity 

User

Application
Server

Wallet

Oracle 8i 
Server

Wallet

Get roles 
from LDAP 
and log in 

user

Oracle
Internet

Directory Wallet

Controlling Database Access 22-11



User Authentication

Security Issues for Middle-Tier Applications
There are a number of security issues for middle-tier applications:

Accountability: The database server must be able to distinguish between the
actions of a client and the actions an application takes on behalf of a client. It
must be possible to audit both kinds of actions.

Differentiation: The database server must be able to distinguish between a web
server transaction, a web server transaction on behalf of a browser client, and a
client accessing the database directly.

Least privilege: Users and middle tiers should be given the fewest privileges
necessary to do their jobs.

Identity Issues in a Multitier Environment
Multitier authentication maintains the identify of the client through all tiers of the
connection. This is necessary because if the identity of the originating client is lost, it
is not possible to maintain useful audit records. In addition, it is not possible to
distinguish operations performed by the application server on behalf of the client
from those done by the application server for itself.

Restricted Privileges in a Multitier Environment
Privileges in a multitier environment are limited to what is necessary to perform the
requested operation.

Client Privileges Client privileges are as limited as possible in a multitier
environment. Operations are performed on behalf of the client by the application
server.

Application Server Privileges Application server privileges in a multitier environment
are limited so that the application server cannot perform unwanted or unneeded
operations while performing a client operation.

See Also: Oracle9i Database Administrator’s Guide for more
information about multitier authentication

Authentication by the Secure Socket Layer Protocol
The Secure Socket Layer (SSL) protocol is an application layer protocol. It can be
used for user authentication to a database, independent of global user management
in Oracle Internet Directory. That is, users can use SSL to authenticate to the
database without implying anything about their directory access. However, if you

22-12 Oracle9i Database Concepts



User Authentication

wish to use the enterprise user functionality to manage users and their privileges in
a directory, the user must use SSL to authenticate to the database. A parameter in
the initialization file governs which use of SSL is expected.

Authentication of Database Administrators
Database administrators perform special operations (such as shutting down or
starting up a database) that should not be performed by normal database users.
Oracle provides a more secure authentication scheme for database administrator
usernames.

You can choose between operating system authentication or password files to
authenticate database administrators.

Figure 22– 3 illustrates the choices you have for database administrator
authentication schemes, depending on whether you administer your database
locally (on the same machine on which the database resides) or if you administer
many different database machines from a single remote client.

Figure 22–3 Database Administrator Authentication Methods

Remote Database Local Database 

Use a password file 

Administration Administration

Yes Yes

No No

Use OS 
authentication

Do you 
want to use OS 
authentication?

Do you 
have a secure 

connection?

On most operating systems, operating system authentication for database
administrators involves placing the operating system username of the database
administrator in a special group (on UNIX systems, this is the dba group) or giving
that operating system username a special process right.

Controlling Database Access 22-13



Oracle Internet Directory

The database uses password files to keep track of database usernames who have
been granted the SYSDBA and SYSOPER privileges.

SYSOPER lets database administrators perform STARTUP, SHUTDOWN, ALTER
DATABASE OPEN/MOUNT, ALTER DATABASE BACKUP, ARCHIVE LOG, and
RECOVER, and includes the RESTRICTED SESSION privilege.

SYSDBA contains all system privileges with ADMIN OPTION, and the SYSOPER
system privilege. Permits CREATE DATABASE and time-based recovery.

See Also:

Your Oracle operating system-specific documentation for
information about operating system authentication of database
administrators

Oracle9i Database Administrator’s Guide

Oracle Internet Directory
Oracle Internet Directory is a directory service implemented as an application on
the Oracle database. It enables retrieval of information about dispersed users and
network resources. Oracle Internet Directory combines Lightweight Directory
Access Protocol (LDAP), version 3, the open Internet standard directory access
protocol, with the high performance, scalability, robustness, and availability of the
Oracle Server.

Oracle Internet Directory includes the following:

Oracle directory server, which responds to client requests for information about
people and resources, and to updates of that information, using a multitier
architecture directly over TCP/IP

Oracle directory replication server, which replicates LDAP data between Oracle
directory servers

Oracle Directory Manager, a graphical user interface administration tool

A variety of command line administration and data management tools

See Also: Oracle Internet Directory Administrator’s Guide

User Tablespace Settings and Quotas
As part of every user’s security domain, the database administrator can set several
options regarding tablespace use:

22-14 Oracle9i Database Concepts



User Tablespace Settings and Quotas

Default Tablespace Option

Temporary Tablespace Option

Tablespace Access and Quotas

Default Tablespace Option
When a user creates a schema object without specifying a tablespace to contain the
object, Oracle places the object in the user’s default tablespace. You set a user’s
default tablespace when the user is created, and you can change it after the user has
been created.

Temporary Tablespace Option
When a user executes a SQL statement that requires the creation of a temporary
segment, Oracle allocates that segment in the user’s temporary tablespace.

Tablespace Access and Quotas
You can assign to each user a tablespace quota for any tablespace of the database.
Doing so can accomplish two things:

You allow the user to use the specified tablespace to create schema objects, if the
user has the appropriate privileges.

You can limit the amount of space allocated for storage of a user’s schema
objects in the specified tablespace.

By default, each user has no quota on any tablespace in the database. Therefore, if
the user has the privilege to create some type of schema object, he or she must also
have been either assigned a tablespace quota in which to create the object or been
given the privilege to create that object in the schema of another user who was
assigned a sufficient tablespace quota.

You can assign two types of tablespace quotas to a user: a quota for a specific
amount of disk space in the tablespace (specified in bytes, kilobytes, or megabytes),
or a quota for an unlimited amount of disk space in the tablespace. You should
assign specific quotas to prevent a user’s objects from consuming too much space in
a tablespace.

Tablespace quotas and temporary segments have no effect on each other:

Controlling Database Access 22-15



The User Group PUBLIC

Temporary segments do not consume any quota that a user might possess. The
schema objects that Oracle automatically creates in temporary segments are
owned by SYS and therefore are not subject to quotas.

Temporary segments can be created in a tablespace for which a user has no
quota.

You can assign a tablespace quota to a user when you create that user, and you can
change that quota or add a different quota later.

Revoke a user’s tablespace access by altering the user’s current quota to zero. With
a quota of zero, the user’s objects in the revoked tablespace remain, but the objects
cannot be allocated any new space.

The User Group PUBLIC
Each database contains a user group called PUBLIC. The PUBLIC user group
provides public access to specific schema objects, such as tables and views, and
provides all users with specific system privileges. Every user automatically belongs
to the PUBLIC user group.

As members of PUBLIC, users can see (select from) all data dictionary tables
prefixed with USER and ALL. Additionally, a user can grant a privilege or a role to
PUBLIC. All users can use the privileges granted to PUBLIC.

You can grant or revoke any system privilege, object privilege, or role to PUBLIC.
However, to maintain tight security over access rights, grant only privileges and
roles that are of interest to all users to PUBLIC.

Granting and revoking some system and object privileges to and from PUBLIC can
cause every view, procedure, function, package, and trigger in the database to be
recompiled.

PUBLIC has the following restrictions:

You cannot assign tablespace quotas to PUBLIC, although you can assign the
UNLIMITED TABLESPACE system privilege to PUBLIC.

You can create database links and synonyms as PUBLIC (using CREATE
PUBLIC DATABASE LINK/SYNONYM), but no other schema object can be owned
by PUBLIC. For example, the following statement is not legal:

CREATE TABLE public.employees ... ;

22-16 Oracle9i Database Concepts



User Resource Limits and Profiles

Note: Rollback segments can be created with the keyword
PUBLIC, but these are not owned by the PUBLIC user group. All
rollback segments are owned by SYS.

See Also:

Chapter 2, "Data Blocks, Extents, and Segments"

Chapter 23, "Privileges, Roles, and Security Policies"

User Resource Limits and Profiles
You can set limits on the amount of various system resources available to each user
as part of a user’s security domain. By doing so, you can prevent the uncontrolled
consumption of valuable system resources such as CPU time.

This resource limit feature is very useful in large, multiuser systems, where system
resources are very expensive. Excessive consumption of these resources by one or
more users can detrimentally affect the other users of the database. In single-user or
small-scale multiuser database systems, the system resource feature is not as
important, because users’ consumption of system resources is less likely to have
detrimental impact.

You manage a user’s resource limits and password management preferences with
his or her profile— a named set of resource limits that you can assign to that user.
Each Oracle database can have an unlimited number of profiles. Oracle allows the
security administrator to enable or disable the enforcement of profile resource limits
universally.

If you set resource limits, a slight degradation in performance occurs when users
create sessions. This is because Oracle loads all resource limit data for the user when
a user connects to a database.

See Also: Oracle9i Database Administrator’s Guide for information
about security administrators

Types of System Resources and Limits
Oracle can limit the use of several types of system resources, including CPU time
and logical reads. In general, you can control each of these resources at the session
level, the call level, or both.

Session Level

Controlling Database Access 22-17



User Resource Limits and Profiles

Each time a user connects to a database, a session is created. Each session
consumes CPU time and memory on the computer that executes Oracle. You can set
several resource limits at the session level.

If a user exceeds a session-level resource limit, Oracle terminates (rolls back) the
current statement and returns a message indicating the session limit has been
reached. At this point, all previous statements in the current transaction are
intact, and the only operations the user can perform are COMMIT, ROLLBACK, or
disconnect (in this case, the current transaction is committed). All other
operations produce an error. Even after the transaction is committed or rolled
back, the user can accomplish no more work during the current session.

Call Level

Each time a SQL statement is executed, several steps are taken to process the
statement. During this processing, several calls are made to the database as part
of the different execution phases. To prevent any one call from using the system
excessively, Oracle lets you set several resource limits at the call level.

If a user exceeds a call-level resource limit, Oracle halts the processing of the
statement, rolls back the statement, and returns an error. However, all previous
statements of the current transaction remain intact, and the user’s session
remains connected.

CPU Time
When SQL statements and other types of calls are made to Oracle, an amount of
CPU time is necessary to process the call. Average calls require a small amount of
CPU time. However, a SQL statement involving a large amount of data or a
runaway query can potentially consume a large amount of CPU time, reducing CPU
time available for other processing.

To prevent uncontrolled use of CPU time, you can limit the CPU time for each call
and the total amount of CPU time used for Oracle calls during a session. The limits
are set and measured in CPU one-hundredth seconds (0.01 seconds) used by a call
or a session.

Logical Reads
Input/output (I/O) is one of the most expensive operations in a database system.
SQL statements that are I/O intensive can monopolize memory and disk use and
cause other database operations to compete for these resources.

To prevent single sources of excessive I/O, Oracle let you limit the logical data
block reads for each call and for each session. Logical data block reads include data

22-18 Oracle9i Database Concepts



User Resource Limits and Profiles

block reads from both memory and disk. The limits are set and measured in number
of block reads performed by a call or during a session.

Other Resources
Oracle also provides for the limitation of several other resources at the session level:

You can limit the number of concurrent sessions for each user. Each user can
create only up to a predefined number of concurrent sessions.

You can limit the idle time for a session. If the time between Oracle calls for a
session reaches the idle time limit, the current transaction is rolled back, the
session is aborted, and the resources of the session are returned to the system.
The next call receives an error that indicates the user is no longer connected to
the instance. This limit is set as a number of elapsed minutes.

Note: Shortly after a session is aborted because it has exceeded an
idle time limit, the process monitor (PMON) background process
cleans up after the aborted session. Until PMON completes this
process, the aborted session is still counted in any session/user
resource limit.

You can limit the elapsed connect time for each session. If a session’s duration
exceeds the elapsed time limit, the current transaction is rolled back, the session
is dropped, and the resources of the session are returned to the system. This
limit is set as a number of elapsed minutes.

Note: Oracle does not constantly monitor the elapsed idle time or
elapsed connection time. Doing so would reduce system
performance. Instead, it checks every few minutes. Therefore, a
session can exceed this limit slightly (for example, by five minutes)
before Oracle enforces the limit and aborts the session.

You can limit the amount of private SGA space (used for private SQL areas) for
a session. This limit is only important in systems that use the shared server
configuration. Otherwise, private SQL areas are located in the PGA. This limit is
set as a number of bytes of memory in an instance’s SGA. Use the characters K
or M to specify kilobytes or megabytes.

Controlling Database Access 22-19



User Resource Limits and Profiles

See Also: Oracle9i Database Administrator’s Guide for instructions
about enabling and disabling resource limits

Profiles
A profile is a named set of specified resource limits that can be assigned to a valid
username of an Oracle database. Profiles provide for easy management of resource
limits. Profiles are also the way in which you administer password policy.

When to Use Profiles
You need to create and manage user profiles only if resource limits are a
requirement of your database security policy. To use profiles, first categorize the
related types of users in a database. Just as roles are used to manage the privileges
of related users, profiles are used to manage the resource limits of related users.
Determine how many profiles are needed to encompass all types of users in a
database and then determine appropriate resource limits for each profile.

Determine Values for Resource Limits of a Profile
Before creating profiles and setting the resource limits associated with them, you
should determine appropriate values for each resource limit. You can base these
values on the type of operations a typical user performs. For example, if one class of
user does not normally perform a high number of logical data block reads, then set
the LOGICAL_READS_PER_SESSION and LOGICAL_READS_PER_CALL limits
conservatively.

Usually, the best way to determine the appropriate resource limit values for a given
user profile is to gather historical information about each type of resource usage.
For example, the database or security administrator can use the AUDIT SESSION
clause to gather information about the limits CONNECT_TIME, LOGICAL_READS_
PER_SESSION, and LOGICAL_READS_PER_CALL.

You can gather statistics for other limits using the Monitor feature of Oracle
Enterprise Manager (or SQL*Plus), specifically the Statistics monitor.

See Also: Chapter 24, "Auditing"

22-20 Oracle9i Database Concepts



23
Privileges, Roles, and Security Policies

This chapter explains how you can control users’ ability to execute system
operations and to access schema objects by using privileges, roles, and security
policies. The chapter includes:

Introduction to Privileges

Introduction to Roles

Fine-Grained Access Control

Application Context

Secure Application Roles

Privileges, Roles, and Security Policies 23-1



Introduction to Privileges

Introduction to Privileges
A privilege is a right to execute a particular type of SQL statement or to access
another user’s object. Some examples of privileges include the right to:

Connect to the database (create a session)

Create a table

Select rows from another user’s table

Execute another user’s stored procedure

You grant privileges to users so these users can accomplish tasks required for their
job. You should grant a privilege only to a user who absolutely requires the
privilege to accomplish necessary work. Excessive granting of unnecessary
privileges can compromise security. A user can receive a privilege in two different
ways:

You can grant privileges to users explicitly. For example, you can explicitly
grant the privilege to insert records into the employees table to the user
SCOTT.

You can also grant privileges to a role (a named group of privileges), and then
grant the role to one or more users. For example, you can grant the privileges to
select, insert, update, and delete records from the employees table to the role
named clerk, which in turn you can grant to the users scott and brian.

Because roles allow for easier and better management of privileges, you should
normally grant privileges to roles and not to specific users.

There are two distinct categories of privileges:

System privileges

Schema object privileges

See Also: Oracle9i Database Administrator’s Guide for a complete
list of all system and schema object privileges, as well as
instructions for privilege management

System Privileges
A system privilege is the right to perform a particular action, or to perform an
action on any schema objects of a particular type. For example, the privileges to
create tablespaces and to delete the rows of any table in a database are system
privileges. There are over 60 distinct system privileges.

23-2 Oracle9i Database Concepts



Introduction to Privileges

Grant and Revoke System Privileges
You can grant or revoke system privileges to users and roles. If you grant system
privileges to roles, then you can use the roles to manage system privileges. For
example, roles permit privileges to be made selectively available.

Note: In general, you grant system privileges only to
administrative personnel and application developers. End users
normally do not require the associated capabilities.

Use either of the following to grant or revoke system privileges to users and roles:

Oracle Enterprise Manager Console

The SQL statements GRANT and REVOKE

Who Can Grant or Revoke System Privileges?
Only users who have been granted a specific system privilege with the ADMIN
OPTION or users with the system privileges GRANT ANY PRIVILEGE or GRANT ANY
OBJECT PRIVILEGE can grant or revoke system privileges to other users.

Schema Object Privileges
A schema object privilege is a privilege or right to perform a particular action on a
specific schema object:

Table

View

Sequence

Procedure

Function

Package

Different object privileges are available for different types of schema objects. For
example, the privilege to delete rows from the departments table is an object
privilege.

Some schema objects, such as clusters, indexes, triggers, and database links, do not
have associated object privileges. Their use is controlled with system privileges. For

Privileges, Roles, and Security Policies 23-3



Introduction to Privileges

example, to alter a cluster, a user must own the cluster or have the ALTER ANY
CLUSTER system privilege.

A schema object and its synonym are equivalent with respect to privileges. That is,
the object privileges granted for a table, view, sequence, procedure, function, or
package apply whether referencing the base object by name or using a synonym.

For example, assume there is a table jward.emp with a synonym named
jward.employee and the user jward issues the following statement:

GRANT SELECT ON emp TO swilliams;

The user swilliams can query jward.emp by referencing the table by name or
using the synonym jward.employee:

SELECT * FROM jward.emp;
SELECT * FROM jward.employee;

If you grant object privileges on a table, view, sequence, procedure, function, or
package to a synonym for the object, the effect is the same as if no synonym were
used. For example, if jward wanted to grant the SELECT privilege for the emp table
to swilliams, jward could issue either of the following statements:

GRANT SELECT ON emp TO swilliams;
GRANT SELECT ON employee TO swilliams;

If a synonym is dropped, all grants for the underlying schema object remain in
effect, even if the privileges were granted by specifying the dropped synonym.

Grant and Revoke Schema Object Privileges
Schema object privileges can be granted to and revoked from users and roles. If you
grant object privileges to roles, you can make the privileges selectively available.
Object privileges for users and roles can be granted or revoked using the following:

The SQL statements GRANT and REVOKE, respectively

The Add Privilege to Role/User dialog box and the Revoke Privilege from
Role/User dialog box of Oracle Enterprise Manager.

Who Can Grant Schema Object Privileges?
A user automatically has all object privileges for schema objects contained in his or
her schema. A user can grant any object privilege on any schema object he or she
owns to any other user or role. A user with the GRANT ANY OBJECT PRIVILEGE can
grant or revoke any specified object privilege to another user with or without the

23-4 Oracle9i Database Concepts



------------------------------ ------------------------------

------------------------------ ---------------------------------------- ---

Introduction to Privileges

GRANT OPTION of the GRANT statement. Otherwise, the grantee can use the
privilege, but cannot grant it to other users.

For example, assume user SCOTT has a table named t2:

SQL>GRANT grant any object privilege TO U1;
SQL> connect u1/u1
Connected.
SQL> GRANT select on scott.t2 \TO U2;
SQL> SELECT GRANTEE, OWNER, GRANTOR, PRIVILEGE, GRANTABLE FROM DBA_TAB_PRIVS
WHERE TABLE_NAME = 'employees';

GRANTEE OWNER

GRANTOR PRIVILEGE GRA

U2 SCOTT
SCOTT SELECT NO

See Also: Oracle9i SQL Reference

Table Security
Schema object privileges for tables allow table security at the level of DML and
DDL operations.

Data Manipulation Language Operations
You can grant privileges to use the DELETE, INSERT, SELECT, and UPDATE DML
operations on a table or view. Grant these privileges only to users and roles that
need to query or manipulate a table’s data.

You can restrict INSERT and UPDATE privileges for a table to specific columns of the
table. With selective INSERT, a privileged user can insert a row with values for the
selected columns. All other columns receive NULL or the column’s default value.
With selective UPDATE, a user can update only specific column values of a row.
Selective INSERT and UPDATE privileges are used to restrict a user’s access to
sensitive data.

For example, if you do not want data entry users to alter the salary column of the
employees table, selective INSERT or UPDATE privileges can be granted that
exclude the salary column. Alternatively, a view that excludes the salary
column could satisfy this need for additional security.

Privileges, Roles, and Security Policies 23-5



Introduction to Privileges

See Also: Oracle9i SQL Reference for more information about these
DML operations

Data Definition Language Operations
The ALTER, INDEX, and REFERENCES privileges allow DDL operations to be
performed on a table. Because these privileges allow other users to alter or create
dependencies on a table, you should grant privileges conservatively. A user
attempting to perform a DDL operation on a table may need additional system or
object privileges. For example, to create a trigger on a table, the user requires both
the ALTER TABLE object privilege for the table and the CREATE TRIGGER system
privilege.

As with the INSERT and UPDATE privileges, the REFERENCES privilege can be
granted on specific columns of a table. The REFERENCES privilege enables the
grantee to use the table on which the grant is made as a parent key to any foreign
keys that the grantee wishes to create in his or her own tables. This action is
controlled with a special privilege because the presence of foreign keys restricts the
data manipulation and table alterations that can be done to the parent key.
A column-specific REFERENCES privilege restricts the grantee to using the named
columns (which, of course, must include at least one primary or unique key of the
parent table).

See Also: Chapter 21, "Data Integrity" for more information about
primary keys, unique keys, and integrity constraints

View Security
Schema object privileges for views allow various DML operations, which actually
affect the base tables from which the view is derived. DML object privileges for
tables can be applied similarly to views.

Privileges Required to Create Views
To create a view, you must meet the following requirements:

You must have been granted one of the following system privileges, either
explicitly or through a role:

– The CREATE VIEW system privilege (to create a view in your schema)

– The CREATE ANY VIEW system privilege (to create a view in another user’s
schema)

You must have been explicitly granted one of the following privileges:

23-6 Oracle9i Database Concepts



Introduction to Privileges

– The SELECT, INSERT, UPDATE, or DELETE object privileges on all base
objects underlying the view

– The SELECT ANY TABLE, INSERT ANY TABLE, UPDATE ANY TABLE, or
DELETE ANY TABLE system privileges

Additionally, in order to grant other users access to your view, you must have
received object privileges to the base objects with the GRANT OPTION clause or
appropriate system privileges with the ADMIN OPTION clause. If you have not,
grantees cannot access your view.

See Also: Oracle9i SQL Reference

Increase Table Security with Views
To use a view, you require appropriate privileges only for the view itself. You do not
require privileges on base objects underlying the view.

Views add two more levels of security for tables, column-level security and
value-based security:

A view can provide access to selected columns of base tables. For example, you
can define a view on the employees table to show only the employee_id,
last_name, and manager_id columns:

CREATE VIEW employees_manager AS
SELECT last_name, employee_id, manager_id FROM employees;

A view can provide value-based security for the information in a table. A
WHERE clause in the definition of a view displays only selected rows of base
tables. Consider the following two examples:

CREATE VIEW lowsal AS
SELECT * FROM employees
WHERE salary < 10000;

The LOWSAL view allows access to all rows of the employees table that have a
salary value less than 10000. Notice that all columns of the employees table are
accessible in the LOWSAL view.

CREATE VIEW own_salary AS
SELECT last_name, salary
FROM employees
WHERE last_name = USER;

Privileges, Roles, and Security Policies 23-7



Introduction to Privileges

In the own_salary view, only the rows with an last_name that matches the
current user of the view are accessible. The own_salary view uses the user
pseudocolumn, whose values always refer to the current user. This view
combines both column-level security and value-based security.

Procedure Security
The only schema object privilege for procedures, including standalone procedures
and functions as well as packages, is EXECUTE. Grant this privilege only to users
who need to execute a procedure or compile another procedure that calls it.

Procedure Execution and Security Domains
A user with the EXECUTE object privilege for a specific procedure can execute the
procedure or compile a program unit that references the procedure. No runtime
privilege check is made when the procedure is called. A user with the EXECUTE ANY
PROCEDURE system privilege can execute any procedure in the database.

A user can be granted privileges through roles to execute procedures.

Additional privileges on referenced objects are required for invoker-rights
procedures, but not for definer-rights procedures.

See Also: "PL/SQL Blocks and Roles" on page 23-21

Definer Rights A user of a definer-rights procedure requires only the privilege to
execute the procedure and no privileges on the underlying objects that the
procedure accesses, because a definer-rights procedure operates under the security
domain of the user who owns the procedure, regardless of who is executing it. The
procedure’s owner must have all the necessary object privileges for referenced
objects. Fewer privileges have to be granted to users of a definer-rights procedure,
resulting in tighter control of database access.

You can use definer-rights procedures to control access to private database objects
and add a level of database security. By writing a definer-rights procedure and
granting only EXECUTE privilege to a user, the user can be forced to access the
referenced objects only through the procedure.

At runtime, the privileges of the owner of a definer-rights stored procedure are
always checked before the procedure is executed. If a necessary privilege on a
referenced object has been revoked from the owner of a definer-rights procedure,
then the procedure cannot be executed by the owner or any other user.

23-8 Oracle9i Database Concepts



Introduction to Privileges

Note: Trigger execution follows the same patterns as
definer-rights procedures. The user executes a SQL statement,
which that user is privileged to execute. As a result of the SQL
statement, a trigger is fired. The statements within the triggered
action temporarily execute under the security domain of the user
that owns the trigger.

See Also: Chapter 17, "Triggers"

Invoker Rights An invoker-rights procedure executes with all of the invoker’s
privileges. Roles are enabled unless the invoker-rights procedure was called directly
or indirectly by a definer-rights procedure. A user of an invoker-rights procedure
needs privileges (either directly or through a role) on objects that the procedure
accesses through external references that are resolved in the invoker’s schema.

The invoker needs privileges at runtime to access program references embedded in
DML statements or dynamic SQL statements, because they are effectively
recompiled at runtime.

For all other external references, such as direct PL/SQL function calls, the owner’s
privileges are checked at compile time, and no runtime check is made. Therefore,
the user of an invoker-rights procedure needs no privileges on external references
outside DML or dynamic SQL statements. Alternatively, the developer of an
invoker-rights procedure only needs to grant privileges on the procedure itself, not
on all objects directly referenced by the invoker-rights procedure.

Many packages provided by Oracle, such as most of the DBMS_* packages, run
with invoker rights— they do not run as the owner (SYS) but rather as the current
user. However, some exceptions exist such as the DBMS_RLS package.

You can create a software bundle that consists of multiple program units, some with
definer rights and others with invoker rights, and restrict the program entry points
(controlled step-in). A user who has the privilege to execute an entry-point
procedure can also execute internal program units indirectly, but cannot directly call
the internal programs.

See Also:

"Fine-Grained Access Control" on page 23-24

Oracle9i Supplied PL/SQL Packages and Types Reference for
detailed documentation of the Oracle supplied packages

Privileges, Roles, and Security Policies 23-9



Introduction to Privileges

System Privileges Needed to Create or Alter a Procedure
To create a procedure, a user must have the CREATE PROCEDURE or CREATE ANY
PROCEDURE system privilege. To alter a procedure, that is, to manually recompile a
procedure, a user must own the procedure or have the ALTER ANY PROCEDURE
system privilege.

The user who owns the procedure also must have privileges for schema objects
referenced in the procedure body. To create a procedure, you must have been
explicitly granted the necessary privileges (system or object) on all objects
referenced by the procedure. You cannot have obtained the required privileges
through roles. This includes the EXECUTE privilege for any procedures that are
called inside the procedure being created.

Triggers also require that privileges to referenced objects be granted explicitly to the
trigger owner. Anonymous PL/SQL blocks can use any privilege, whether the
privilege is granted explicitly or through a role.

Packages and Package Objects
A user with the EXECUTE object privilege for a package can execute any public
procedure or function in the package and access or modify the value of any public
package variable. Specific EXECUTE privileges cannot be granted for a package’s
constructs. Therefore, you may find it useful to consider two alternatives for
establishing security when developing procedures, functions, and packages for a
database application. These alternatives are described in the following examples.

Packages and Package Objects Example 1 This example shows four procedures created
in the bodies of two packages.

CREATE PACKAGE BODY hire_fire AS
PROCEDURE hire(...) IS
BEGIN
INSERT INTO employees . . .

END hire;
PROCEDURE fire(...) IS
BEGIN
DELETE FROM employees . . .

END fire;
END hire_fire;

CREATE PACKAGE BODY raise_bonus AS
PROCEDURE give_raise(...) IS
BEGIN
UPDATE employees SET salary = . . .

23-10 Oracle9i Database Concepts



Introduction to Privileges

END give_raise;
PROCEDURE give_bonus(...) IS
BEGIN
UPDATE employees SET bonus = . . .

END give_bonus;
END raise_bonus;

Access to execute the procedures is given by granting the EXECUTE privilege for the
package, using the following statements:

GRANT EXECUTE ON hire_fire TO big_bosses;
GRANT EXECUTE ON raise_bonus TO little_bosses;

Granting EXECUTE privilege granted for a package provides uniform access to all
package objects.

Packages and Package Objects Example 2 This example shows four procedure
definitions within the body of a single package. Two additional standalone
procedures and a package are created specifically to provide access to the
procedures defined in the main package.

CREATE PACKAGE BODY employee_changes AS
PROCEDURE change_salary(...) IS BEGIN ... END;
PROCEDURE change_bonus(...) IS BEGIN ... END;
PROCEDURE insert_employee(...) IS BEGIN ... END;
PROCEDURE delete_employee(...) IS BEGIN ... END;

END employee_changes;

CREATE PROCEDURE hire
BEGIN
employee_changes.insert_employee(...)

END hire;

CREATE PROCEDURE fire
BEGIN
employee_changes.delete_employee(...)

END fire;

PACKAGE raise_bonus IS
PROCEDURE give_raise(...) AS
BEGIN
employee_changes.change_salary(...)

END give_raise;

PROCEDURE give_bonus(...)

Privileges, Roles, and Security Policies 23-11



Introduction to Privileges

BEGIN
employee_changes.change_bonus(...)

END give_bonus;

Using this method, the procedures that actually do the work (the procedures in the
employee_changes package) are defined in a single package and can share
declared global variables, cursors, on so on. By declaring top-level procedures
hire and fire, and an additional package raise_bonus, you can grant selective
EXECUTE privileges on procedures in the main package:

GRANT EXECUTE ON hire, fire TO big_bosses;
GRANT EXECUTE ON raise_bonus TO little_bosses;

Type Security
This section describes privileges for types, methods, and objects.

System Privileges for Named Types
Oracle defines system privileges shown in Table 23– 1 for named types (object types,
VARRAYs, and nested tables):

Table 23–1 System Privileges for Named Types

Privilege Allows you to...

CREATE TYPE Create named types in your own schemas.

CREATE ANY TYPE Create a named type in any schema.

ALTER ANY TYPE Alter a named type in any schema.

DROP ANY TYPE Drop a named type in any schema.

EXECUTE ANY TYPE Use and reference a named type in any schema.

The CONNECT and RESOURCE roles include the CREATE TYPE system privilege. The
DBA role includes all of these privileges.

Object Privileges
The only object privilege that applies to named types is EXECUTE. If the EXECUTE
privilege exists on a named type, a user can use the named type to:

Define a table

Define a column in a relational table

23-12 Oracle9i Database Concepts



Introduction to Privileges

Declare a variable or parameter of the named type

The EXECUTE privilege permits a user to invoke the type's methods, including the
type constructor. This is similar to EXECUTE privilege on a stored PL/SQL
procedure.

Method Execution Model
Method execution is the same as any other stored PL/SQL procedure.

See Also: "Procedure Security" on page 23-8

Privileges Required to Create Types and Tables Using Types
To create a type, you must meet the following requirements:

You must have the CREATE TYPE system privilege to create a type in your
schema or the CREATE ANY TYPE system privilege to create a type in another
user's schema. These privileges can be acquired explicitly or through a role.

The owner of the type must have been explicitly granted the EXECUTE object
privileges to access all other types referenced within the definition of the type,
or have been granted the EXECUTE ANY TYPE system privilege. The owner
cannot have obtained the required privileges through roles.

If the type owner intends to grant access to the type to other users, the owner
must have received the EXECUTE privileges to the referenced types with the
GRANT OPTION or the EXECUTE ANY TYPE system privilege with the ADMIN
OPTION. If not, the type owner has insufficient privileges to grant access on the
type to other users.

To create a table using types, you must meet the requirements for creating a table
and these additional requirements:

The owner of the table must have been explicitly granted the EXECUTE object
privileges to access all types referenced by the table, or have been granted the
EXECUTE ANY TYPE system privilege. The owner cannot have obtained the
required privileges through roles.

If the table owner intends to grant access to the table to other users, the owner
must have received the EXECUTE privileges to the referenced types with the
GRANT OPTION or the EXECUTE ANY TYPE system privilege with the ADMIN
OPTION. If not, the table owner has insufficient privileges to grant access on the
type to other users.

Privileges, Roles, and Security Policies 23-13



Introduction to Privileges

See Also: "Table Security" on page 23-5 for the requirements for
creating a table

Privileges Required to Create Types and Tables Using Types Example
Assume that three users exist with the CONNECT and RESOURCE roles:

user1

user2

user3

User1 performs the following DDL in his schema:

CREATE TYPE type1 AS OBJECT (
attr1 NUMBER);

CREATE TYPE type2 AS OBJECT (
attr2 NUMBER);

GRANT EXECUTE ON type1 TO user2;
GRANT EXECUTE ON type2 TO user2 WITH GRANT OPTION;

User2 performs the following DDL in his schema:

CREATE TABLE tab1 OF user1.type1;
CREATE TYPE type3 AS OBJECT (
attr3 user1.type2);

CREATE TABLE tab2 (
col1 user1.type2);

The following statements succeed because user2 has EXECUTE privilege on
user1's TYPE2 with the GRANT OPTION:

GRANT EXECUTE ON type3 TO user3;
GRANT SELECT on tab2 TO user3;

However, the following grant fails because user2 does not have EXECUTE privilege
on user1's TYPE1 with the GRANT OPTION:

GRANT SELECT ON tab1 TO user3;

User3 can successfully perform the following statements:

CREATE TYPE type4 AS OBJECT (
attr4 user2.type3);

CREATE TABLE tab3 OF type4;

23-14 Oracle9i Database Concepts



Introduction to Privileges

Privileges on Type Access and Object Access
Existing column-level and table-level privileges for DML statements apply to both
column objects and row objects. Oracle defines the privileges shown in Table 23– 2
for object tables:

Table 23–2 Privileges for Object Tables

Privilege Allows you to...

SELECT Access an object and its attributes from the table

UPDATE Modify the attributes of the objects that make up the table’s rows

INSERT Create new objects in the table

DELETE Delete rows

Similar table privileges and column privileges apply to column objects. Retrieving
instances does not in itself reveal type information. However, clients must access
named type information in order to interpret the type instance images. When a
client requests such type information, Oracle checks for EXECUTE privilege on the
type.

Consider the following schema:

CREATE TYPE emp_type (
eno NUMBER, ename CHAR(31), eaddr addr_t);

CREATE TABLE emp OF emp_t;

and the following two queries:

SELECT VALUE(emp) FROM emp;
SELECT eno, ename FROM emp;

For either query, Oracle checks the user's SELECT privilege for the emp table. For
the first query, the user needs to obtain the emp_type type information to interpret
the data. When the query accesses the emp_type type, Oracle checks the user's
EXECUTE privilege.

Execution of the second query, however, does not involve named types, so Oracle
does not check type privileges.

Additionally, using the schema from the previous section, user3 can perform the
following queries:

SELECT tab1.col1.attr2 FROM user2.tab1 tab1;
SELECT attr4.attr3.attr2 FROM tab3;

Privileges, Roles, and Security Policies 23-15



Introduction to Privileges

Note that in both SELECT statements, user3 does not have explicit privileges on
the underlying types, but the statement succeeds because the type and table owners
have the necessary privileges with the GRANT OPTION.

Oracle checks privileges on the following events, and returns an error if the client
does not have the privilege for the action:

Pinning an object in the object cache using its REF value causes Oracle to check
SELECT privilege on the containing object table.

Modifying an existing object or flushing an object from the object cache causes
Oracle to check UPDATE privilege on the destination object table.

Flushing a new object causes Oracle to check INSERT privilege on the
destination object table.

Deleting an object causes Oracle to check DELETE privilege on the destination
table.

Pinning an object of named type causes Oracle to check EXECUTE privilege on
the object.

Modifying an object's attributes in a client 3GL application causes Oracle to update
the entire object. Hence, the user needs UPDATE privilege on the object table.
UPDATE privilege on only certain columns of the object table is not sufficient, even if
the application only modifies attributes corresponding to those columns. Therefore,
Oracle does not support column level privileges for object tables.

Type Dependencies
As with stored objects such as procedures and tables, types being referenced by
other objects are called dependencies. There are some special issues for types
depended upon by tables. Because a table contains data that relies on the type
definition for access, any change to the type causes all stored data to become
inaccessible. Changes that can cause this effect are when necessary privileges
required by the type are revoked or the type or dependent types are dropped. If
either of these actions occur, then the table becomes invalid and cannot be accessed.

A table that is invalid because of missing privileges can automatically become valid
and accessible if the required privileges are granted again. A table that is invalid
because a dependent type has been dropped can never be accessed again, and the
only permissible action is to drop the table.

Because of the severe effects which revoking a privilege on a type or dropping a
type can cause, the SQL statements REVOKE and DROP TYPE by default implement a
restrict semantics. This means that if the named type in either statement has table or

23-16 Oracle9i Database Concepts



Introduction to Roles

type dependents, then an error is received and the statement aborts. However, if the
FORCE clause for either statement is used, the statement always succeeds, and if
there are depended-upon tables, they are invalidated.

See Also: Oracle9i Database Reference for details about using the
REVOKE, DROP TYPE, and FORCE clauses

Introduction to Roles
Oracle provides for easy and controlled privilege management through roles. Roles
are named groups of related privileges that you grant to users or other roles. Roles
are designed to ease the administration of end-user system and schema object
privileges. However, roles are not meant to be used for application developers,
because the privileges to access schema objects within stored programmatic
constructs need to be granted directly.

These following properties of roles enable easier privilege management within a
database:

Property Description

Reduced privilege Rather than granting the same set of privileges explicitly to
administration several users, you can grant the privileges for a group of

related users to a role, and then only the role needs to be
granted to each member of the group.

Dynamic privilege If the privileges of a group must change, only the privileges
management of the role need to be modified. The security domains of all

users granted the group’s role automatically reflect the
changes made to the role.

Selective availability of You can selectively enable or disable the roles granted to a
privileges user. This allows specific control of a user’s privileges in any

given situation.

Application awareness The data dictionary records which roles exist, so you can
design applications to query the dictionary and automatically
enable (or disable) selective roles when a user attempts to
execute the application by way of a given username.

Application-specific security You can protect role use with a password. Applications can
be created specifically to enable a role when supplied the
correct password. Users cannot enable the role if they do not
know the password.

Privileges, Roles, and Security Policies 23-17



Introduction to Roles

Database administrators often create roles for a database application. The DBA
grants a secure application role all privileges necessary to run the application. The
DBA then grants the secure application role to other roles or users. An application
can have several different roles, each granted a different set of privileges that allow
for more or less data access while using the application.

The DBA can create a role with a password to prevent unauthorized use of the
privileges granted to the role. Typically, an application is designed so that when it
starts, it enables the proper role. As a result, an application user does not need to
know the password for an application’s role.

See Also:

"Data Definition Language Statements and Roles" on
page 23-22 for information about restrictions for procedures

Oracle9i Application Developer’s Guide - Fundamentals for
instructions for enabling roles from an application

Common Uses for Roles
In general, you create a role to serve one of two purposes:

To manage the privileges for a database application

To manage the privileges for a user group

Figure 23– 1 and the sections that follow describe the two uses of roles.

23-18 Oracle9i Database Concepts



Introduction to Roles

Figure 23–1 Common Uses for Roles

PAY_CLERK Role MANAGER Role REC_CLERK Role 

ACCTS_PAY Role ACCTS_REC Role 

User Roles 

Application Roles 

Users

Privileges to Privileges to 
execute the execute the Application Privileges 
ACCTS_PAY ACCTS_REC
application application

Application Roles
You grant an application role all privileges necessary to run a given database
application. Then, you grant the secure application role to other roles or to specific
users. An application can have several different roles, with each role assigned a
different set of privileges that allow for more or less data access while using the
application.

User Roles
You create a user role for a group of database users with common privilege
requirements. You manage user privileges by granting secure application roles and
privileges to the user role and then granting the user role to appropriate users.

The Mechanisms of Roles
Database roles have the following functionality:

A role can be granted system or schema object privileges.

A role can be granted to other roles. However, a role cannot be granted to itself
and cannot be granted circularly. For example, role A cannot be granted to role B
if role B has previously been granted to role A.

Privileges, Roles, and Security Policies 23-19



Introduction to Roles

Any role can be granted to any database user.

Each role granted to a user is, at a given time, either enabled or disabled. A
user’s security domain includes the privileges of all roles currently enabled for
the user and excludes the privileges of any roles currently disabled for the user.
Oracle allows database applications and users to enable and disable roles to
provide selective availability of privileges.

An indirectly granted role is a role granted to a role. It can be explicitly enabled
or disabled for a user. However, by enabling a role that contains other roles, you
implicitly enable all indirectly granted roles of the directly granted role.

Grant and Revoke Roles
You grant or revoke roles from users or other roles using the following options:

The Grant System Privileges/Roles dialog box and Revoke System
Privileges/Roles dialog box of Oracle Enterprise Manager

The SQL statements GRANT and REVOKE

Privileges are granted to and revoked from roles using the same options. Roles can
also be granted to and revoked from users using the operating system that executes
Oracle, or through network services.

See Also: Oracle9i Database Administrator’s Guide for detailed
instructions about role management

Who Can Grant or Revoke Roles?
Any user with the GRANT ANY ROLE system privilege can grant or revoke any role
except a global role to or from other users or roles of the database. You should grant
this system privilege conservatively because it is very powerful.

Any user granted a role with the ADMIN OPTION can grant or revoke that role to or
from other users or roles of the database. This option allows administrative powers
for roles on a selective basis.

See Also: Oracle9i Database Administrator’s Guide for information
about global roles

23-20 Oracle9i Database Concepts



Introduction to Roles

Role Names
Within a database, each role name must be unique, and no username and role name
can be the same. Unlike schema objects, roles are not contained in any schema.
Therefore, a user who creates a role can be dropped with no effect on the role.

Security Domains of Roles and Users
Each role and user has its own unique security domain. A role’s security domain
includes the privileges granted to the role plus those privileges granted to any roles
that are granted to the role.

A user’s security domain includes privileges on all schema objects in the
corresponding schema, the privileges granted to the user, and the privileges of roles
granted to the user that are currently enabled. (A role can be simultaneously
enabled for one user and disabled for another.) A user’s security domain also
includes the privileges and roles granted to the user group PUBLIC.

PL/SQL Blocks and Roles
The use of roles in a PL/SQL block depends on whether it is an anonymous block
or a named block (stored procedure, function, or trigger), and whether it executes
with definer rights or invoker rights.

Named Blocks with Definer Rights
All roles are disabled in any named PL/SQL block (stored procedure, function, or
trigger) that executes with definer rights. Roles are not used for privilege checking
and you cannot set roles within a definer-rights procedure.

The SESSION_ROLES view shows all roles that are currently enabled. If a named
PL/SQL block that executes with definer rights queries SESSION_ROLES, the query
does not return any rows.

See Also: Oracle9i Database Reference

Anonymous Blocks with Invoker Rights
Named PL/SQL blocks that execute with invoker rights and anonymous PL/SQL
blocks are executed based on privileges granted through enabled roles. Current
roles are used for privilege checking within an invoker-rights PL/SQL block, and
you can use dynamic SQL to set a role in the session.

Privileges, Roles, and Security Policies 23-21



Introduction to Roles

See Also:

PL/SQL User’s Guide and Reference for an explanation of invoker
and definer rights

"Dynamic SQL in PL/SQL" on page 14-20

Data Definition Language Statements and Roles
A user requires one or more privileges to successfully execute a data definition
language (DDL) statement, depending on the statement. For example, to create a
table, the user must have the CREATE TABLE or CREATE ANY TABLE system
privilege. To create a view of another user’s table, the creator requires the CREATE
VIEW or CREATE ANY VIEW system privilege and either the SELECT object
privilege for the table or the SELECT ANY TABLE system privilege.

Oracle avoids the dependencies on privileges received by way of roles by restricting
the use of specific privileges in certain DDL statements. The following rules outline
these privilege restrictions concerning DDL statements:

All system privileges and schema object privileges that permit a user to perform
a DDL operation are usable when received through a role. For example:

– System Privileges: the CREATE TABLE, CREATE VIEW and CREATE
PROCEDURE privileges.

– Schema Object Privileges: the ALTER and INDEX privileges for a table.

Exception: The REFERENCES object privilege for a table cannot be used to define
a table’s foreign key if the privilege is received through a role.

All system privileges and object privileges that allow a user to perform a DML
operation that is required to issue a DDL statement are not usable when
received through a role. For example:

– A user who receives the SELECT ANY TABLE system privilege or the
SELECT object privilege for a table through a role can use neither
privilege to create a view on another user’s table.

The following example further clarifies the permitted and restricted uses of
privileges received through roles:

Assume that a user is:

Granted a role that has the CREATE VIEW system privilege

23-22 Oracle9i Database Concepts



Introduction to Roles

Granted a role that has the SELECT object privilege for the employees table,
but the user is indirectly granted the SELECT object privilege for the
employees table

Directly granted the SELECT object privilege for the departments table

Given these directly and indirectly granted privileges:

The user can issue SELECT statements on both the employees and
departments tables.

Although the user has both the CREATE VIEW and SELECT privilege for the
employees table through a role, the user cannot create a usable view on the
employees table, because the SELECT object privilege for the employees
table was granted through a role. Any views created will produce errors when
accessed.

The user can create a view on the departments table, because the user has the
CREATE VIEW privilege through a role and the SELECT privilege for the
departments table directly.

Predefined Roles
The following roles are defined automatically for Oracle databases:

CONNECT

RESOURCE

DBA

EXP_FULL_DATABASE

IMP_FULL_DATABASE

These roles are provided for backward compatibility to earlier versions of Oracle
and can be modified in the same manner as any other role in an Oracle database.

The Operating System and Roles
In some environments, you can administer database security using the operating
system. The operating system can be used to manage the granting (and revoking) of
database roles and to manage their password authentication. This capability is not
available on all operating systems.

See Also: Your operating system specific Oracle documentation
for details on managing roles through the operating system

Privileges, Roles, and Security Policies 23-23



Fine-Grained Access Control

Roles in a Distributed Environment
When you use roles in a distributed database environment, you must ensure that all
needed roles are set as the default roles for a distributed (remote) session. You
cannot enable roles when connecting to a remote database from within a local
database session. For example, you cannot execute a remote procedure that
attempts to enable a role at the remote site.

See Also: Oracle9i Heterogeneous Connectivity Administrator’s Guide

Fine-Grained Access Control
Fine-grained access control lets you implement security policies with functions and
then associate those security policies with tables, views, or synonyms. The database
server automatically enforces those security policies, no matter how the data is
accessed (for example, by ad hoc queries).

You can:

Use different policies for SELECT, INSERT, UPDATE, and DELETE.

Use security policies only where you need them (for example, on salary
information).

Use more than one policy for each table, including building on top of base
policies in packaged applications.

Distinguish policies between different applications, by using policy groups. Each
policy group indicates a set of policies that belong to an application.

The database administrator designates an application context, called a driving
context, to indicate the policy group in effect. When tables, views, or synonyms are
accessed, the fine-grained access control engine looks up the driving context to
determine the policy group in effect and enforces all the associated policies that
belong to that policy group.

The PL/SQL package DBMS_RLS let you administer your security policies. Using
this package, you can add, drop, enable, disable, and refresh the policies you create.

See Also:

Oracle9i Supplied PL/SQL Packages and Types Reference for
information about package implementation

Oracle9i Application Developer’s Guide - Fundamentals for
information and examples on establishing security policies

23-24 Oracle9i Database Concepts



Application Context

Dynamic Predicates
The function or package that implements the security policy you create returns a
predicate (a WHERE condition). This predicate controls access as set out by the
policy. Rewritten queries are fully optimized and shareable.

Application Context
Application context facilitates the implementation of fine-grained access control. It
lets you implement security policies with functions and then associate those
security policies with applications. Each application can have its own
application-specific context. Users are not allowed to arbitrarily change their
context (for example, through SQL*Plus).

Application contexts permit flexible, parameter-based access control, based on
attributes of interest to an application. For example, context attributes for a human
resources application could include "position," "organizational unit," and "country,"
whereas attributes for an order-entry control might be "customer number" and
"sales region".

You can:

Base predicates on context values

Use context values within predicates, as bind variables

Set user attributes

Access user attributes

To define an application context:

1. Create a PL/SQL package with functions that validate and set the context for
your application. You may want to use an event trigger on login to set the initial
context for logged-in users.

2. Use CREATE CONTEXT to specify a unique context name and associate it with
the PL/SQL package you created.

3. Do one of the following:

Reference the application context in a policy function implementing
fine-grained access control.

Create an event trigger on login to set the initial context for a user. For
example, you could query a user’s employee number and set this as an
"employee number" context value.

Privileges, Roles, and Security Policies 23-25



Secure Application Roles

4. Reference the application context.

See Also:

PL/SQL User’s Guide and Reference

Oracle9i Supplied PL/SQL Packages and Types Reference

Oracle9i Application Developer’s Guide - Fundamentals

Secure Application Roles
Oracle provides secure application roles, which are roles that can be enabled only
by authorized PL/SQL packages. This mechanism restricts the enabling of roles to
the invoking application.

In previous releases, passwords were either embedded in the source code or stored
in a table. Application developers no longer need to secure a role by embedding
passwords inside applications. Instead, they create a secure application role and
specify which PL/SQL package is authorized to enable the role. Package identity is
used to determine whether there are sufficient privileges to enable the roles. The
application performs authentication before enabling the role.

The application can perform customized authorization, such as checking whether
the user has connected through a proxy, before enabling the role.

Note: Because of the restriction that users cannot change security
domain inside definer’s right procedures, secure application roles
can only be enabled inside invoker’s right procedures.

Creation of Secure Application Roles
Secure application roles are created by using the CREATE ROLE ... IDENTIFIED
USING statement. Here is an example:

CREATE ROLE admin_role IDENTIFIED USING hr.admin;

This indicates the following:

The role admin_role to be created is a secure application role.

The role can only be enabled by any module defined inside the PL/SQL
package hr.admin.

You must have the system privilege CREATE ROLE to execute this statement.

23-26 Oracle9i Database Concepts



Secure Application Roles

Roles that are enabled inside an Invoker’s Right procedure remain in effect even
after the procedure exits. Therefore, you can have a dedicated procedure that deals
with enabling the role for the rest of the session to use.

See Also:

Oracle9i SQL Reference

PL/SQL User’s Guide and Reference

Oracle9i Supplied PL/SQL Packages and Types Reference

Oracle9i Application Developer’s Guide - Fundamentals

Privileges, Roles, and Security Policies 23-27



Secure Application Roles

23-28 Oracle9i Database Concepts



24
Auditing

This chapter discusses the auditing feature of Oracle. It includes:

Introduction to Auditing

Statement Auditing

Privilege Auditing

Schema Object Auditing

Fine-Grained Auditing

Focus Statement, Privilege, and Schema Object Auditing

Audit in a Multitier Environment

Auditing 24-1



Introduction to Auditing

Introduction to Auditing
Auditing is the monitoring and recording of selected user database actions.
Auditing is normally used to:

Investigate suspicious activity. For example, if an unauthorized user is deleting
data from tables, the security administrator might decide to audit all
connections to the database and all successful and unsuccessful deletions of
rows from all tables in the database.

Monitor and gather data about specific database activities. For example, the
database administrator can gather statistics about which tables are being
updated, how many logical I/Os are performed, or how many concurrent users
connect at peak times.

Features of Auditing
This section outlines the features of the Oracle auditing mechanism.

Types of Auditing
Oracle supports three general types of auditing:

Type of Auditing Description

Statement auditing The selective auditing of SQL statements with respect to only
the type of statement, not the specific schema objects on
which it operates. Statement auditing options are typically
broad, auditing the use of several types of related actions for
each option. For example, AUDIT TABLE tracks several DDL
statements regardless of the table on which they are issued.
You can set statement auditing to audit selected users or
every user in the database.

Privilege auditing The selective auditing of the use of powerful system
privileges to perform corresponding actions, such as AUDIT
CREATE TABLE. Privilege auditing is more focused than
statement auditing because it audits only the use of the target
privilege. You can set privilege auditing to audit a selected
user or every user in the database.

Schema object auditing The selective auditing of specific statements on a particular
schema object, such as AUDIT SELECT ON employees.
Schema object auditing is very focused, auditing only a
specific statement on a specific schema object. Schema object
auditing always applies to all users of the database.

24-2 Oracle9i Database Concepts



Introduction to Auditing

Type of Auditing Description

Fine-grained auditing Fine-grained auditing allows the monitoring of data access
based on content.

Focus of Auditing
Oracle allows audit options to be focused or broad. You can audit:

Successful statement executions, unsuccessful statement executions, or both

Statement executions once in each user session or once every time the statement
is executed

Activities of all users or of a specific user

Audit Records and the Audit Trail
Audit records include information such as the operation that was audited, the user
performing the operation, and the date and time of the operation. Audit records can
be stored in either a data dictionary table, called the database audit trail, or an
operating system audit trail.

The database audit trail is a single table named SYS.AUD$ in the SYS schema of
each Oracle database’s data dictionary. Several predefined views are provided to
help you use the information in this table.

The audit trail records can contain different types of information, depending on the
events audited and the auditing options set. The following information is always
included in each audit trail record, if the information is meaningful to the particular
audit action:

The user name

The session identifier

The terminal identifier

The name of the schema object accessed

The operation performed or attempted

The completion code of the operation

The date and time stamp

The system privileges used

Auditing 24-3



Introduction to Auditing

The operating system audit trail is encoded and not readable, but it is decoded in
data dictionary files and error messages.

Action code describes the operation performed or attempted. The AUDIT_
ACTIONS data dictionary table contains a list of these codes and their
descriptions.

Privileges used describes any system privileges used to perform the operation.
The SYSTEM_PRIVILEGE_MAP table lists all of these codes and their
descriptions.

Completion code describes the result of the attempted operation. Successful
operations return a value of zero, and unsuccessful operations return the Oracle
error code describing why the operation was unsuccessful.

See Also:

Oracle9i Database Administrator’s Guide for instructions for
creating and using predefined views

Oracle9i Database Error Messages for a list of completion codes

Mechanisms for Auditing
This section explains the mechanisms used by the Oracle auditing features.

When Are Audit Records Generated?
The recording of audit information can be enabled or disabled. This functionality
allows any authorized database user to set audit options at any time but reserves
control of recording audit information for the security administrator.

When auditing is enabled in the database, an audit record is generated during the
execute phase of statement execution.

SQL statements inside PL/SQL program units are individually audited, as
necessary, when the program unit is executed.

The generation and insertion of an audit trail record is independent of a user’s
transaction. Therefore, even if a user’s transaction is rolled back, the audit trail
record remains committed.

24-4 Oracle9i Database Concepts



Introduction to Auditing

Note: Operations by the SYS user and by users connected through
SYSDBA or SYSOPER can be fully audited with the AUDIT_SYS_
OPERATIONS initialization parameter. Successful SQL statements
from SYS are audited indiscriminately.

The audit records for sessions established by the user SYS or
connections with administrative privileges are sent to an operating
system location. Sending them to a location separate from the usual
database audit trail in the SYS schema provides for greater auditing
security.

See Also:

Oracle9i Database Administrator’s Guide for instructions on
enabling and disabling auditing

Chapter 14, "SQL, PL/SQL, and Java" for information about the
different phases of SQL statement processing and shared SQL

Events Always Audited to the Operating System Audit Trail
Regardless of whether database auditing is enabled, Oracle always records some
database-related actions into the operating system audit trail:

At instance startup, an audit record is generated that details the operating
system user starting the instance, the user’s terminal identifier, the date and
time stamp, and whether database auditing was enabled or disabled. This
information is recorded into the operating system audit trail because the
database audit trail is not available until after startup has successfully
completed. Recording the state of database auditing at startup further prevents
an administrator from restarting a database with database auditing disabled so
that they are able to perform unaudited actions.

At instance shutdown, an audit record is generated that details the operating
system user shutting down the instance, the user’s terminal identifier, the date
and time stamp.

During connections with administrator privileges, an audit record is generated
that details the operating system user connecting to Oracle with administrator
privileges. This provides accountability of users connected with administrator
privileges.

Auditing 24-5



Introduction to Auditing

On operating systems that do not make an audit trail accessible to Oracle, these
audit trail records are placed in an Oracle audit trail file in the same directory as
background process trace files.

See Also: Your operating system specific Oracle documentation
for more information about the operating system audit trail

When Do Audit Options Take Effect?
Statement and privilege audit options in effect at the time a database user connects
to the database remain in effect for the duration of the session. A session does not
see the effects of statement or privilege audit options being set or changed. The
modified statement or privilege audit options take effect only when the current
session is ended and a new session is created. In contrast, changes to schema object
audit options become effective for current sessions immediately.

Audit in a Distributed Database
Auditing is site autonomous. An instance audits only the statements issued by
directly connected users. A local Oracle node cannot audit actions that take place in
a remote database. Because remote connections are established through the user
account of a database link, the remote Oracle node audits the statements issued
through the database link’s connection.

See Also: Oracle9i Database Administrator’s Guide

Audit to the Operating System Audit Trail
Oracle allows audit trail records to be directed to an operating system audit trail if
the operating system makes such an audit trail available to Oracle. On some other
operating systems, these audit records are written to a file outside the database,
with a format similar to other Oracle trace files.

See Also: Your operating system specific Oracle documentation,
to see if this feature has been implemented on your operating
system

Oracle allows certain actions that are always audited to continue, even when the
operating system audit trail (or the operating system file containing audit records)
is unable to record the audit record. The usual cause of this is that the operating
system audit trail or the file system is full and unable to accept new records.

System administrators configuring operating system auditing should ensure that
the audit trail or the file system does not fill completely. Most operating systems

24-6 Oracle9i Database Concepts



Privilege Auditing

provide administrators with sufficient information and warning to ensure this does
not occur. Note, however, that configuring auditing to use the database audit trail
removes this vulnerability, because the Oracle server prevents audited events from
occurring if the audit trail is unable to accept the database audit record for the
statement.

Statement Auditing
Statement auditing is the selective auditing of related groups of statements that fall
into two categories:

DDL statements, regarding a particular type of database structure or schema
object, but not a specifically named structure or schema object (for example,
AUDIT TABLE audits all CREATE and DROP TABLE statements)

DML statements, regarding a particular type of database structure or schema
object, but not a specifically named structure or schema object (for example,
AUDIT SELECT TABLE audits all SELECT ... FROM TABLE/VIEW statements,
regardless of the table or view)

Statement auditing can be broad or focused, auditing the activities of all database
users or the activities of only a select list of database users.

Privilege Auditing
Privilege auditing is the selective auditing of the statements allowed using a system
privilege. For example, auditing of the SELECT ANY TABLE system privilege audits
users’ statements that are executed using the SELECT ANY TABLE system privilege.
You can audit the use of any system privilege.

In all cases of privilege auditing, owner privileges and schema object privileges are
checked before system privileges. If the owner and schema object privileges suffice
to permit the action, the action is not audited.

If similar statement and privilege audit options are both set, only a single audit
record is generated. For example, if the statement clause TABLE and the system
privilege CREATE TABLE are both audited, only a single audit record is generated
each time a table is created.

Privilege auditing is more focused than statement auditing because each option
audits only specific types of statements, not a related list of statements. For
example, the statement auditing clause TABLE audits CREATE TABLE, ALTER
TABLE, and DROP TABLE statements, while the privilege auditing option CREATE

Auditing 24-7



Schema Object Auditing

TABLE audits only CREATE TABLE statements. This is because only the CREATE
TABLE statement requires the CREATE TABLE privilege.

Like statement auditing, privilege auditing can audit the activities of all database
users or the activities of a select list of database users.

Schema Object Auditing
Schema object auditing is the selective auditing of specific DML statements
(including queries) and GRANT and REVOKE statements for specific schema objects.
Schema object auditing audits the operations permitted by schema object privileges,
such as SELECT or DELETE statements on a given table, as well as the GRANT and
REVOKE statements that control those privileges.

You can audit statements that reference tables, views, sequences, standalone stored
procedures and functions, and packages. Procedures in packages cannot be audited
individually.

Statements that reference clusters, database links, indexes, or synonyms are not
audited directly. However, you can audit access to these schema objects indirectly
by auditing the operations that affect the base table.

Schema object audit options are always set for all users of the database. These
options cannot be set for a specific list of users. You can set default schema object
audit options for all auditable schema objects.

See Also: Oracle9i SQL Reference for information about auditable
schema objects

Schema Object Audit Options for Views and Procedures
Views and procedures (including stored functions, packages, and triggers) reference
underlying schema objects in their definition. Therefore, auditing with respect to
views and procedures has several unique characteristics. Multiple audit records can
be generated as the result of using a view or a procedure: The use of the view or
procedure is subject to enabled audit options, and the SQL statements issued as a
result of using the view or procedure are subject to the enabled audit options of the
base schema objects (including default audit options).

Consider the following series of SQL statements:

AUDIT SELECT ON employees;

CREATE VIEW employees_departments AS
SELECT employee_id, last_name, department_id

24-8 Oracle9i Database Concepts



Fine-Grained Auditing

FROM employees, departments
WHERE employees.department_id = departments.department_id;

AUDIT SELECT ON employees_departments;

SELECT * FROM employees_departments;

As a result of the query on employees_departments, two audit records are
generated: one for the query on the employees_departments view and one for
the query on the base table employees (indirectly through the employees_
departments view). The query on the base table departments does not generate
an audit record because the SELECT audit option for this table is not enabled. All
audit records pertain to the user that queried the employees_departments view.

The audit options for a view or procedure are determined when the view or
procedure is first used and placed in the shared pool. These audit options remain
set until the view or procedure is flushed from, and subsequently replaced in, the
shared pool. Auditing a schema object invalidates that schema object in the cache
and causes it to be reloaded. Any changes to the audit options of base schema
objects are not observed by views and procedures in the shared pool.

Continuing with the previous example, if auditing of SELECT statements is turned
off for the employees table, use of the employees_departments view no longer
generates an audit record for the employees table.

Fine-Grained Auditing
Fine-grained auditing allows the monitoring of data access based on content. A
built-in audit mechanism in the database prevents users from by-passing the audit.
Oracle triggers can potentially monitor DML actions such as INSERT, UPDATE, and
DELETE. However, monitoring on SELECT is costly and might not work for certain
cases. In addition, users might want to define their own alert action in addition to
just inserting an audit record into the audit trail. This feature provides an extensible
interface to audit SELECT statements on tables and views.

The DBMS_FGA package administers these value-based audit policies. Using DBMS_
FGA, the security administrator creates an audit policy on the target table. If any of
the rows returned from a query block matches the audit condition (these rows are
referred to as interested rows), then an audit event entry, including username, SQL
text, bind variable, policy name, session ID, time stamp, and other attributes, is
inserted into the audit trail. As part of the extensibility framework, administrators
can also optionally define an appropriate event handler, an audit event handler, to

Auditing 24-9



Focus Statement, Privilege, and Schema Object Auditing

process the event; for example, the audit event handler could send an alert page to
the administrator.

See Also: Oracle9i Application Developer’s Guide - Fundamentals

Focus Statement, Privilege, and Schema Object Auditing
Oracle lets you focus statement, privilege, and schema object auditing in three
areas:

Successful and unsuccessful executions of the audited SQL statement

BY SESSION and BY ACCESS auditing

For specific users or for all users in the database (statement and privilege
auditing only)

Successful and Unsuccessful Statement Executions Auditing
For statement, privilege, and schema object auditing, Oracle allows the selective
auditing of successful executions of statements, unsuccessful attempts to execute
statements, or both. Therefore, you can monitor actions even if the audited
statements do not complete successfully.

You can audit an unsuccessful statement execution only if a valid SQL statement is
issued but fails because of lack of proper authorization or because it references a
nonexistent schema object. Statements that failed to execute because they simply
were not valid cannot be audited. For example, an enabled privilege auditing
option set to audit unsuccessful statement executions audits statements that use the
target system privilege but have failed for other reasons (such as when CREATE
TABLE is set but a CREATE TABLE statement fails due to lack of quota for the
specified tablespace).

Using either form of the AUDIT statement, you can include:

The WHENEVER SUCCESSFUL clause, to audit only successful executions of the
audited statement

The WHENEVER NOT SUCCESSFUL clause, to audit only unsuccessful executions
of the audited statement

Neither of the previous clauses, to audit both successful and unsuccessful
executions of the audited statement

24-10 Oracle9i Database Concepts



Focus Statement, Privilege, and Schema Object Auditing

BY SESSION and BY ACCESS Clauses of Audit Statement
Most auditing options can be set to indicate how audit records should be generated
if the audited statement is issued multiple times in a single user session. This
section describes the distinction between the BY SESSION and BY ACCESS clauses
of the AUDIT statement.

See Also: Oracle9i SQL Reference

BY SESSION
For any type of audit (schema object, statement, or privilege), BY SESSION inserts
only one audit record in the audit trail, for each user and schema object, during the
session that includes an audited action.

A session is the time between when a user connects to and disconnects from an
Oracle database.

BY SESSION Example 1 Assume the following:

The SELECT TABLE statement auditing option is set BY SESSION.

JWARD connects to the database and issues five SELECT statements against the
table named departments and then disconnects from the database.

SWILLIAMS connects to the database and issues three SELECT statements
against the table employees and then disconnects from the database.

In this case, the audit trail contains two audit records for the eight SELECT
statements— one for each session that issued a SELECT statement.

BY SESSION Example 2 Alternatively, assume the following:

The SELECT TABLE statement auditing option is set BY SESSION.

JWARD connects to the database and issues five SELECT statements against the
table named departments, and three SELECT statements against the table
employees, and then disconnects from the database.

In this case, the audit trail contains two records— one for each schema object against
which the user issued a SELECT statement in a session.

Auditing 24-11



Focus Statement, Privilege, and Schema Object Auditing

Note: If you use the BY SESSION clause when directing audit
records to the operating system audit trail, Oracle generates and
stores an audit record each time an access is made. Therefore, in
this auditing configuration, BY SESSION is equivalent to BY
ACCESS.

BY ACCESS
Setting audit BY ACCESS inserts one audit record into the audit trail for each
execution of an auditable operation within a cursor. Events that cause cursors to be
reused include the following:

An application, such as Oracle Forms, holding a cursor open for reuse

Subsequent execution of a cursor using new bind variables

Statements executed within PL/SQL loops where the PL/SQL engine optimizes
the statements to reuse a single cursor

Note that auditing is not affected by whether a cursor is shared. Each user creates
her or his own audit trail records on first execution of the cursor.

For example, assume that:

The SELECT TABLE statement auditing option is set BY ACCESS.

JWARD connects to the database and issues five SELECT statements against the
table named departments and then disconnects from the database.

SWILLIAMS connects to the database and issues three SELECT statements
against the table departments and then disconnects from the database.

The single audit trail contains eight records for the eight SELECT statements.

Defaults and Excluded Operations
The AUDIT statement lets you specify either BY SESSION or BY ACCESS. However,
several audit options can be set only BY ACCESS, including:

All statement audit options that audit DDL statements

All privilege audit options that audit DDL statements

For all other audit options, BY SESSION is used by default.

24-12 Oracle9i Database Concepts



Audit in a Multitier Environment

Audit By User
Statement and privilege audit options can audit statements issued by any user or
statements issued by a specific list of users. By focusing on specific users, you can
minimize the number of audit records generated.

Audit By User Example To audit statements by the users SCOTT and BLAKE that query
or update a table or view, issue the following statements:

AUDIT SELECT TABLE, UPDATE TABLE
BY scott, blake;

See Also: Oracle9i SQL Reference for more information about
auditing by user

Audit in a Multitier Environment
In a multitier environment, Oracle preserves the identity of a client through all tiers.
This enables auditing of actions taken on behalf of the client. To do so, use the BY
proxy clause in your AUDIT statement.

This clause allows you a few options. You can:

Audit SQL statements issued by the specific proxy on its own behalf

Audit statements executed on behalf of a specified user or users

Audit all statements executed on behalf of any user

The middle tier can set the light-weight user identity in a database session so that it
will show up in audit trail. You use OCI or PL/SQL to set the client identifier.

See Also:

Oracle9i Application Developer’s Guide - Fundamentals

Oracle Call Interface Programmer’s Guide

PL/SQL User’s Guide and Reference

Auditing 24-13


