1. Database Fundamentals

Date: 07.10.2009 Instructor: SL. Dr. Ing. Ciprian Dobre ciprian.dobre@cs.pub.ro

Database Administration I © All rights reserved

Welcome !

Database Administration I © All rights reserved

- "Let's face it, if you work in Oracle and haven't heard about Don Burleson^{*}, you must either be very new or not interested in learning about your profession" – DBAZine
- *http://www.dba-oracle.com/resume_don.htm

Reguli de Notare

- Nota = MIN(10, NotaParcurs + NotaExamen)
- NotaParcurs (6p):
 - NotaCurs prezenta si teste (neanuntate) (2p)
 - NotaActivitati activitati stiintifice stabilite de comun acord cu titularul de curs, ce se finalizeaza cu un refererat si o prezentare in fata colectivului (2p)
 - Laborator (2p)
- NotaExamen (4p)

Course Topics

1. Database Fundamentals

- Database, DBMS and Data Model
- The Relational Data Model
- Database Development and Planning
- The Entity-Relationship Data Model
- Relational Databases

2. Database Architecture

- Logical and Physical Storage Structures
- Application Architecture
- Memory Architecture
- Process Architecture
- Database Resource Management

3. Database Structures

- Database and Data Dictionary
- Control and Redo Log Files
- Tablespaces and Data Files
- Segments and Storage Structures
- Storage Structure and Relationships
- Data Blocks
- Extents
- Segments
- Managing Undo Segments

Course Topics

4. Managing Tables, Indexes, and Constraints

- Managing Space for Schema Objects
- Storing Data
- Managing Indexes
- Managing Constraints
- Managing Views, Sequences, and Synonyms

5. Data Protection

- Data Concurrency and Consistency
- Data Integrity
- Controlling Database Access
- Privileges, Roles, and Security Policies
- Auditing
- Using Globalization Support

6. Backup and Recovery Fundamentals

- Backup fundamentals
- Disaster planning and recovery strategies
- High availability overview
- High availability architectures
- Operational policies
- Instance and Media Recovery Structures
- Configuring the Database Archiving Mode

Laboratory topics

- 1. Installing and Managing Oracle
 - The Oracle Universal Installer
 - Oracle Enterprise Manager
 - Optimal Flexible Architecture
 - Oracle Managed Files (OMF)
- 2. The Oracle Instance
 - Administrator Authentication Methods
 - Connecting to an Oracle Instance
 - Database and Instance Startup and Shutdown
 - Managing Sessions
- 3. Creating a Database and Data Dictionary
 - Considerations Before Creating a Database
 - The Oracle Database Configuration Assistant
 - Creating a Database
 - Troubleshooting Database Creation
 - Using Data Dictionary and Dynamic Performance Views

Laboratory topics

- 4. Control and Redo Log Files
 - Maintaining the Control File
 - Maintaining Online Redo Log Files
 - Managing Archived Redo Logs
 - Using LogMiner to Analyze Redo Log Files
- 5. Managing Tablespaces and Data Files
- 6. Managing Undo Space
- 7. Managing Tables, Indexes, and Constraints
 - Managing Tables
 - Managing Indexes
 - Maintaining Data Integrity
- 8. Managing Users, Security, and Globalization Support
 - Managing Password Security and Resources
 - Managing Users
 - Managing Privileges
 - Managing Roles
 - Using Globalization Support

Laboratory topics

9. Oracle Net Server

- Networking Overview
- Oracle Net Architecture
- Basic Oracle Net Server Side Configuration
- Naming Method Configuration
- Usage and Configuration of the Oracle Shared Server

10. Backup and Recovery

- Oracle Recovery Manager Overview and Configuration
- User-Managed Backups
- RMAN Backups
- User-Managed Complete Recovery
- RMAN Complete Recovery
- User-Managed Incomplete Recovery
- RMAN Incomplete Recovery
- RMAN Maintenance
- Recovery Catalog Creation and Maintenance

11. The Database Administrator

- Tasks of a Database Administrator
- Managing Job Queues
- Detecting and Repairing Data Block Corruption
- Loading Data into a Database
- Export and Import Utilities

Text Books

- Lecture notes will be made available online
- Recommended books
 - Kevin Loney, George Koch, "Oracle9i: The Complete Reference", Oracle Press, McGraw-Hill/Osborne
 - Oracle, "Oracle Database. Concepts".
 - OCP Study Books: Doug Stuns, Matthew Weishan, "Oracle9i DBA Fundamentals I" & "Oracle9i DBA Fundamentals II", SYBEX
- Research papers will be made available online
- Important: http://tahiti.oracle.com/

- Database, DBMS and Data Model
- Relational Databases
- Database Administration

1. Database, DBMS and Data Model

Database Administration I © All rights reserved

Key Concepts

- The database = shared collection of data
- The DBMS = shared collection of facilities
- Both the DBMS and database adhere to the tenets of some data model
- The DBMS is used to manage all interactions with the database by end-users or application programs
- The components of database, DBMS and data model all contribute to the definition of a database system
- Database development is the process of representing the data needed to support some organizational activity in some chosen DBMS

Properties of a database

Functions of a DBMS

Database Administration I © All rights reserved

Database System

• DBMS:

- Define suitable data structures (the schema)
- Define integrity constraints
- Includes manipulative facilities
- Enforce integrity
- Result = database
- The DBMS and database must adhere to a data model

Data models

- DBMS must adhere to the principles of data model
 - General principles for handling data
 - Relational data model
 - Hierarchical data model
 - Object-oriented data model

Data models

- Set of principles that define a data model:
 - Data definition
 - How data is structured
 - Set of templates
 - Data manipulation
 - How data is operated upon
 - Access and change over data
 - Data integrity
 - Which states are valid for a database
 - Valid and invalid changes of data

Generations of architectural data models

- Primitive data models
 - Record structures grouped in file-structures
- Classic data models
 - Hierarchical \rightarrow network \rightarrow relational data models
- Semantic data models
 - SDMs provide a more expressive means of representing the meaning of data
 - Post-relational and object-oriented data models

The Evolution of Database Modeling Techniques

Database Administration I © All rights reserved

A walk down the history of data management...

Database Administration I © All rights reserved

The Paleolithic Period

- No general purpose tools for managing large volumes of data...
 - OS provided resource management
 - Data was stored in files
 - Applications performed data management functionalities
 - Fault-tolerance
 - Concurrency control
 - Reliability
 - Optimizations
 - ...
 - Such functionalities had to be re-implemented for each application

The Neolithic Period...

- Early file systems evolve into general-purpose data management tools.
- DBMS Goals:
 - Efficiency and scalability (faster than files)
 - Management of large heterogeneous types of structured data
 - High reliability
 - Information sharing (multiple users)
- DBMS Users:
 - E-commerce companies, banks, airlines, transportation companies, corporate databases, government agencies, ...
 - Anyone you can think of!

The Dark Ages

- Network & hierarchical data models
 - Resulted in data spaghetti
 - Applications needed to chase pointers
 - There was little data abstraction or separation of concerns
 - little difference between physical data representation and logical data representation
 - Optimization was entirely left to application writers
 - There were no clean data management languages
 - Cobol anyone?

Hierarchical Database Model

Database Administration I © All rights reserved

Network Database Model

Database Administration I © All rights reserved

The Relational Era..

- Relational model proposed by Codd (Codd, 1970)
 - Everything is a relation
 - Query consists of algebraic composition of a few powerful operators
 - Equivalent to a first-order relational calculus
- Primary features
 - Simple clean data representation
 - solid mathematical basis
 - Data abstraction
 - Users did not need to be concerned about how data is stored physically
 - Simple declarative query language
 - User's specify what to compute not how to do it.
 - Optimization by the system

Data Wars (1)

- Codasyl versus relational debates began...
 - Codasyl: relational model is too simple, applications built using it will never scale in performance.
 - Relational: network/hierarchical models have no formal basis, are too complex, and unmanageable as application complexity increases.
- Relational model found many supporters
 - Specially at universities
 - Its simplicity was enticing

Data Wars (2)

- Many projects started off trying to implement a relational DBMS
 - System R @ IBM Almaden
 - Ingres @ Berkeley
 - These early systems led to the technologies that drive modern data management
- Early prototypes became products
 - DB2 & Ingres
- Principle designers from both the System R teams & Ingres left to start companies
 - Oracle, Sybase
- Early relational companies went door to door converting industry to the relational model
 - Industry got hooked on to the simplicity of writing complex applications in relational model
 - Boeing among the first converts

Pointer's Strike Back...

- Complex objects in emerging DBMS applications cannot be effectively represented as records in relational model.
- Representing information in RDBMSs requires complex and inefficient conversion into and from the relational model to the application programming language
- ODBMSs provide a direct representation of objects to DBMSs overcoming the *impedance mismatch* problem

Object Model

- Object:
 - observable entity in the world being modeled
 - similar to concept to entity in the E/R model
- An object consists of:
 - attributes: properties built in from primitive types
 - relationships: properties whose type is a reference to some other object or a collection of references
 - methods: functions that may be applied to the object.

http://en.wikipedia.org/wiki/Comparison_of_object_database_management_systems

Object Identity

- Each object has an identity which it maintains even if some or all of its attributes change.
- Object identity is a stronger notion of identity than in relational DBMSs.
- Identity in relational DBMSs is value based (primary key).
- Identity in ODBMSs built into data model
 no user specified identifier is required
- OID is a similar notion as pointer in programming language
- Object identifier (OID) can be stored as attribute in object to refer to another object.
- References to other objects via their OIDs can result in a containment hierarchy
- *Note:* containment hierarchy different from class hierarchy

Containment Hierarchy

Links in containment hierarchy should be read as is-part-of instead of is-a

Object Database Management Group (ODMG)

- Special interest group to develop standards that allow ODBMS customers to write portable applications
- Standards include ("The Object Data Standard ODMG 3.0", 2001):
 - Object Model
 - Object Specification Languages
 - Object Definition Language (ODL) for schema definition
 - Object Interchange Format (OIF) to exchange objects between databases
 - Object Query Language
 - declarative language to query and update database objects
 - Language Bindings (C++, Java, Smalltalk)
 - Object manipulation language
 - Mechanisms to invoke OQL from language
 - Procedures for operation on databases and transactions
- Next Generation Standardization Work by OMG
 - Currently, the Object Management Group (OMG), as distinguished from ODMG, plans a "4th, next generation" object database standard to reflect changes in object database technology.

Disadvantages of ODBMS Approach

- Low protection
 - since persistent objects manipulated from applications directly, more changes that errors in applications can violate data integrity.
- Non-declarative interface:
 - difficult to optimize queries
 - difficult to express queries
- But
 - Most ODBMSs offer a declarative query language OQL to overcome the problem.
 - OQL is very similar to SQL and can be optimized effectively.
 - OQL can be invoked from inside ODBMS programming language.
 - Objects can be manipulated both within OQL and programming language without explicitly transferring values between the two languages.
 - OQL embedding maintains simplicity of ODBMS programming language interface and yet provides declarative access.

The Return of the Relations ... POSTGRES

- Relational model evolved into ORDBMSs that include "best of" objectoriented concepts
- The very first ORDBMS prototype built @ Berkeley

POSTGRES $\xrightarrow[commercialized]{}$ Illustra $\xrightarrow[bought by]{}$ Informix \rightarrow Informix Universal Server (IUS) product line

→ PostgreSQL (released under a BSD-style license)

- Has had major impact on major commercial DBMS which have all migrated to ORDBMS model.
- SQL3 supported by modern databases adapted many of the concepts developed in Postgres
 - » http://www.objs.com/x3h7/sql3.htm

POSTGRES — Combinations

- Introduced object orientation into relation DBMSs.
- Fundamental Concepts.
 - Each record has an OID
 - Access to data though:
 - query language POSTQUEL
 - navigation through OIDs
 - Classes
 - Inheritance
 - Types: rich set of types available for columns
 - Functions: can be called within POSTQUEL

 \bigcirc

Classes And Inheritance

- Class analogous to relation
- User can create new class

create Emp (name = c12, salary = float, age = int)

Classes can inherit from others

create Salesman (quota = float) inherits Emp

- Multiple inheritance permitted. If new class causes ambiguity it is not created.
- Classes:
 - real: base classes or relations
 - derived: views
 - version: maintained differentially compared to parent class

See "Data mining si data warehousing" or "Modelarea datelor"...

Database Technology Matrix

XML the new revolution?

- Just when relational model had driven out object-oriented database technology, WWW led to the proliferation of semi-structured data.
- 2 approaches to supporting XML
 - Extend relational technology to support XML
 - Native XML databases

And we're back...

Database Administration I © All rights reserved

Database Development

- Conceptual modeling
 - The real-world is expressed in terms of data requirements
- Logical modeling
 - The real-world is expressed in terms of the principle of the data model
- Physical modeling
 - The real-world is expressed in terms of the constructs of the DMBS (tables, access structures such as indexes)

Database Systems Development

Layers of an ICT system

Data management layer

- Facilities provided by DBMS
 - Buffer between applications, end-users and a database
- ANSI-SPARC*, 1975
 - Proposed a three-layer architecture for the data management
 - Three schemas/level of abstraction/views

* American National Standards Institute Standard Planning and Requirements Committee

Database Administration I © All rights reserved

ANSI/SPARC Architecture

- The external or user level
 - How the user or application view the database
 - Several programs or users can share the same view
- The conceptual level
 - The organization view of the data
 - Relationship between the database and applicable constraints
 - Logical view of the database
- The internal or physical level
 - How data is physically stored

ANSI/SPARC Architecture

DBMS

Database Administration I $\ensuremath{\textcircled{O}}$ All rights reserved

Interaction between DBMS and operating system

DBMS Kernel

Computer Science & Engineering Department

Database Administration I © All rights reserved

Functions of a DBMS

- CRUD functions
- Data dictionary
- Transaction management
- Concurrency control
- Recovery
- Authorization
- Data communication
- Data integrity
- Administration utilities

2. Relational Databases

Database Administration I © All rights reserved

The Relational Database Model

Database Administration I © All rights reserved

Original of the Relational Model

- Developed by Dr. E. F. Codd in 1969
- Relies on mathematical relations
- Relations are defined that store data
- Most databases today are based on the Relational Model
- Operators are used to produce and manage relations
- Constraints are used for integrity enforcement
- Utilizes a standard access language (SQL)
- Tools are provided to manage the Relational Database

Relational Database Model – a picture of the data

PROJECT_ID		ſ_ID	DEPARTMENT_ID	PROJECT	Project	COMPLETION	BUDGET
	1	ᡟ	1 1	Software	sales data mart	4-Apr-05	35,000
	2		1	Software	development costing application	24-Apr-05	50,000
	3	Ł	2	Easy Street construction project		15-Dec-08	25,000,000
	4		1	Company	data warehouse	31-Dec-06	250,000

	TASK_ID PROJECT_ID		LID	task Task	
	1		1		Acquire data from outside vendors
	2	▲	1		Build transformation code
	3		1		Test all ETL process
	4		2		Assess vendor costing applications
	5		3		Hire an architect
	6	,	3		Hire an engineer
	7		3		Buy lots of bricks
	8		3		Buy lots of concrete
	9		3		Find someone to do this because we don't know how

Π

3. Database Administration

Database Administration I © All rights reserved

Database Administration

- Database administration
 - The function of managing and maintaining database management systems (DBMS) software.
- DBMS software comes with tools to help DBAs manage the DBMS
 - e. g. Microsoft SQL Server Enterprise Manager, Oracle SQL*Plus and Oracle Enterprise Manager

Database Administration

- Three types of DBAs:
 - System DBA
 - ≈ Physical DBA, Operations DBA, Production Support DBA
 - Focus on physical aspects:
 - DBMS installation
 - Configuration
 - Patching
 - Upgrades
 - Backups
 - Restores
 - Refreshes
 - Performance optimization
 - Maintenance and disaster recovery

Database Administration

- Development DBA
 - Focus on
 - data model design and maintenance
 - DDL (data definition language) generation
 - SQL writing and tuning
 - Coding stored procedures
 - Collaborating with developers to help choose the most appropriate DBMS feature/functionality
- Application DBA
 - 3rd party applications

Database Administrator

- The database administrator (DBA) Responsible for:
 - the technical implementation of database systems,
 - managing the database systems currently in use,
 - setting and enforcing policies for their use.

DBA IS YOU !!!

- The DBA has as core responsibilities:
 - administration of the database,
 - administration of the DBMS,
 - administration of the database environment.

Administration of the database

- Physical design
 - Data administrator (logical design) vs.
 database administrator (physical design)
- Data standards and documentation
- Monitoring data usage and tuning database structures
- Data archiving
- Data backup and recovery

Administration of the DBMS

- Installation
- Configuration control
 - Enforcing policies and procedures for managing updates and changes to the software
- Monitoring DBMS usage and tuning DBMS

Administration of the database environment

- Data control
 - Establishing user groups
 - Assigning passwords
 - Granting access to DBMS facilities
 - Granting access to databases
- Impact assessment
 - Assessing the impact of any data changes
- Privacy, security and integrity
 - Strategies for data integrity, security and privacy
- Training
 - Education of users regarding policies and principles of database use

Next time...

Oracle Internals

Things look different from the inside

