
1

304

Table of Contents

¸ Motivation & Trends in HPC

¸ R&D Projects @ PP

¸ Mathematical Modeling

¸ Numerical Methods used in HPSC

ïSystems of Differential Equations: ODEs & PDEs

ïAutomatic Differentiation

ïSolving Optimization Problems

ïSolving Nonlinear Equations

ïBasic Linear Algebra, Eigenvalues and Eigenvectors

ïChaotic systems

¸ HPSC Program Development/Enhancement: from
Prototype to Production

¸ Visualization, Debugging, Profiling, Performance
Analysis, Optimization, Load Balancing

305

¸ Plot3D[Sin[x]*Cos[y], {x,0,8},{y,0,8}]

¸ ParametricPlot[{t*Sin[t],t*Cos[t]},{t,0,8Pi}]

Visualization ïMathematica Graphics

2

306

¸ ParametricPlot3D[{Exp[-2*u]*Sin[t], Exp[-

u]*Cos[t],u},{t,0,2Pi},{u,0,1}]

¸ ContourPlot[Sin[x] Cos[y],

{x,0,8}, {y,0,8}]

Visualization ïMathematica Graphics

307

¸ 3D volume visualization of the function

¸ Matlab code:
r1 = - 2:.2:2;

r2 = - 2:.25:2;

r3 = - 2:.4:2;

[x,y,z] = meshgrid (r1, r2, r3);

v = x.*exp(- x.^2 - y.^2 - z.^2);

colormap (jet);

brighten(0.5);

slice(r1,r2,r3,v, ...

[1.0],[0.0],[- 0.75,0.5])

xlabel ('x')

ylabel ('y')

zlabel ('z')

Visualization ïMatlab Graphics

]2,2[,, where,),,(
222

-Í= --- zyxxezyxf zyx

3

308

¸ Surface and contour plot of the Rosenbrock

function

¸ Matlab code:
x1 = - 1.5:0.1:1.9;

x2 = - 3:0.2:4;

[xx1 xx2] = meshgrid (x1, x2);

z = 100*(xx2 - xx1.^2).^2 + (1 - xx1).^2;

nan = NaN;

z0 = z;

% removal of points:

z0(z0 > 600) = nan*z0(z0 > 600);

z0(1:20,1:15) = nan (ones(20,15));

% surface plot:

surf(x1,x2,z0)

axis([- 1.5 1.9 - 3 4 0 500])

Visualization ïMatlab Graphics

2

1

22

12)1()(100 xxx -+-

hold on

set(gcf , ' DefaultLineLineWidth ', 2)

contour(x1,x2,z,(0:1.4:50).^3);

hold off

caxis ([0,500])

309

Fosterôs Design Methodology

¸ From Designing and Building Parallel

Programs by Ian Foster

¸ Four Steps:
ïPartitioning

¸ Dividing computation and data

ïCommunication

¸ Sharing data between computations

ïAgglomeration

¸ Grouping tasks to improve performance

ïMapping

¸ Assigning tasks to processors/threads

4

310

Parallel Algorithm Design: PCAM

¸ Partition: Decompose problem into fine-grained

tasks to maximize potential parallelism

¸ Communication: Determine communication

pattern among tasks

¸ Agglomeration: Combine into coarser-grained

tasks, if necessary, to reduce communication

requirements or other costs

¸ Mapping: Assign tasks to processors, subject to

tradeoff between communication cost and

concurrency

311

Communication

Designing Threaded Programs

¸Partition

ïDivide problem into
tasks

¸Communicate

ïDetermine amount
and pattern of
communication

¸Agglomerate

ïCombine tasks

¸Map

ïAssign agglomerated
tasks to created
threads

The
Problem

Initial tasks

Combined Tasks

Final Program

5

312

Parallel Programming Models

¸ Functional Decomposition

ïTask parallelism

ïDivide the computation, then associate the

data

ïIndependent tasks of the same problem

¸ Data Decomposition

ïSame operation performed on different data

ïDivide data into pieces, then associate

computation

313

Decomposition Methods

¸ Functional Decomposition

ïFocusing on computations

can reveal structure in a

problem

Grid reprinted with permission of Dr. Phu V. Luong, Coastal and Hydraulics Laboratory,
ERDC

Domain Decomposition

Å Focus on largest or most frequently

accessed data structure

Å Data Parallelism

ï Same operation applied to all data

Atmosphere Model

Ocean

Model

Land Surface

Model

Hydrology

Model

6

314

Example: Computing Pi

¸ We want to compute p

¸ One method: method of darts*

¸ Ratio of area of square to area of inscribed

circle proportional to p

*Disclaimer: this is a TERRIBLE way to compute p. Donôt even

think about doing it this way in real life!!!

315

Method of Darts

¸ Imagine dartboard with circle of
radius R inscribed in square

¸Area of circle

¸Area of square
¸Area of circle

Area of square

=pR2

=2R()
2
=4R2

=
pR2

4R2
=
p

4

7

316

Method of Darts
¸ So, ratio of areas proportional to p

¸ How to find areas?

ïSuppose we threw darts (completely

randomly) at dartboard

ïCould count number of darts landing in circle

and total number of darts landing in square

ïRatio of these numbers gives approximation

to ratio of areas

ïQuality of approximation increases with

number of darts

ïp= 4 ³# darts inside circle
darts thrown

317

Method of Darts

¸Okay, Rebecca, but how in the world do

we simulate this experiment on a

computer?

ïDecide on length R

ïGenerate pairs of random numbers (x, y)so

that -R Ò x, y Ò R

ïIf (x, y)within circle (i.e. if (x2+y2) Ò R2), add

one to tally for inside circle

ïLastly, find ratio

8

318

Parallelization Strategies

¸What tasks independent of each

other?

¸What tasks must be performed

sequentially?

¸Using PCAM parallel algorithm design

strategy

319

Partition

¸ ñDecompose problem into fine-

grained tasks to maximize potential

parallelismò

¸ Finest grained task: throw of one dart

¸ Each throw independent of all others

¸ If we had huge computer, could

assign one throw to each processor

9

320

Communication

ñDetermine communication pattern among

tasksò

¸ Each processor throws dart(s) then

sends results back to manager process

321

Agglomeration

ñCombine into coarser-grained tasks, if necessary, to

reduce communication requirements or other costsò

¸ To get good value of p, must use millions of darts

¸ We donôt have millions of processors available

¸ Furthermore, communication between manager and

millions of worker processors would be very

expensive

¸ Solution: divide up number of dart throws evenly

between processors, so each processor does a

share of work

10

322

Mapping

ñAssign tasks to processors, subject to

tradeoff between communication cost

and concurrencyò

¸ Assign role of ñmanagerò to processor 0

¸ Processor 0 will receive tallies from all

the other processors, and will compute

final value of p

¸ Every processor, including manager,

will perform equal share of dart throws

323

Debugging and Performance Evaluation

¸ Common errors in parallel programs

¸ Debugging tools

¸ Overview of benchmarking and

performance measurements

11

324

Concepts and Definitions

¸ The typical performance optimization cycle

Code Development

Usage /
Production

Measure

Analyze

Modify / Tune

Functionally
complete and

correct program

Complete, cor-
rect and well-
performing
program

Instrumentation

325

Development Cycle

Analysis

ïIntel® Parallel Amplifier

Design (Introduce Threads)

ïIntel® Performance libraries: IPP and MKL

ïOpenMP* (Intel® Parallel Composer)

ïExplicit threading (Win32*, Pthreads*)

Debug for correctness

ïIntel® Parallel Inspector

ïIntel Debugger

Tune for performance

ïIntel® Parallel Amplifier

12

326

¸ Decide where to add the parallelism

ïAnalyze the serial program

ïPrepare it for parallelism

ïTest the preparations

¸ Add the parallelism

ïThreads, OpenMP, Cilk, TBB, etc.

¸ Find logic problems

ïOnly fails sometimes

ïPlace of failure changes

¸ Find performance problems

Digression ïIntel® Parallel Studio

327

¸ Transforming many serial

algorithms into parallel form takes

five easy high-level steps

¸ Often existing algorithms are over-

constrained by serial language

semantics, and the underlying

mathematics has a natural parallel

expression if you can just find it

Workflow

13

328

¸ If you look at these

steps in more detail,

you find decisions

you will need to make

¸ You do not have to

choose the perfect

answer the first time,

so you can go back

and modify your

choices

Advisor Overview

329

Letôs use the project PrimeSingle for analysis
Å PrimeSingle <start> <end>

Usage: ./PrimeSingle 1 1000000

Hotspot Analysis

¸Use Parallel Amplifier to

find hotspots in application

bool TestForPrime(int val)
�^�������������O�H�W�¶�V���V�W�D�U�W���F�K�H�F�N�L�Q�J���I�U�R�P����

int limit, factor = 3;
limit = (long)(sqrtf((float)val)+0.5f);
while((factor <= limit) && (val % factor))

factor ++;

return (factor > limit);
}

void FindPrimes(int start, int end)
{

// start is always odd
int range = end - start + 1;
for(int i = start; i <= end; i+= 2){

if(TestForPrime(i))
globalPrimes[gPrimesFound++] = i;

ShowProgress(i, range);
}

}Identifies the time consuming regions

