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First-Order Logic and Logic Programming 
 
The programming languages based on the Lambda calculus model of computation are 
convenient for describing functional relationships that hold between the objects of a problem. 
The focus is on computing functions. For this reason, the programs still preserve a strong 
procedural flavor: input data are transformed into output data by means of computations 
specific to the type of the data. Associative languages, such as CLIPS, are more permissive. 
There are no inputs and no outputs and data are uniformly represented in a symbolic way as 
facts of a factual base. The program infers all facts that can be derived from the current facts 
according to a fact-driven set of rules. However, facts have a very simple structure and 
cannot capture complex relationships between objects. Moreover, the inference procedure 
does not suit those applications where a specific goal has to be achieved regardless of other 
goals that could be potentially satisfied according to the current factual base.  
 
Apart from these classes of languages, logic programming languages provide enhanced 
descriptive power of any kind of relationship between the problem objects and, moreover, are 
equipped with efficient inference procedures proved complete and sound. The focus of a 
logic program is not restricted to the computation of the correct values of some properties of 
given objects. The main focus is to derive new relationships between objects, starting from a 
set of given relationships. The theoretical base of such languages is the First-Order Logic 
(abbreviated FOL, and equivalently known as first-order predicate calculus).  
 
 
The syntax and semantics of first-order logic 
 
In a similar way to Lambda calculus, first-order logic can be seen as a language in which 
sentences are constructed according to strict syntactic rules and have a given interpretation 
varying with the application domain. In what follows we prefer the term universe of discourse 
(UoD) instead of solved problem. The reason relies on the generic descriptive power of 
predicate calculus. What is described is a generic set of relationships between generic 
objects that can be subject to different interpretations according to different applications. The 
UoD can be any problem, domain, and world the sentences of a FOL description may apply 
to. This is similar to the Markov algorithmic machine, where the algorithms are working with 
generic alphabets, constants and variables. The basic symbols used to build sentences are:  
 
• Constants: stand for given (generic) objects from the UoD (similar to the constants in the 
Markov algorithmic machine). By convention, the constants are represented by identifiers 
starting with a small-case letter1; e.g., pussycat is a constant that can represent a particular 
cat or a special beloved person.  
 
• Variables: stand for generic objects from the UoD. A variable is represented as an 
identifier starting with a capital letter.   
 
• Functional and predicate symbols are simply names of relations between the objects of 
the UoD. A functional identifier, called simply a function, describes a functional relationship. A 
predicate corresponds to any kind of relation. Recall that an n-ary relation over a set Sn = 
S×S×…n times…×S is a subset of tuples <x1,x2,…,xn>, xi∈S from Sn. Assume that friend is 
such a binary relation friend={<fred,pussycat>, <bibo,pussycat>, <teo,pussycat>}. 
Notice that the constants can have different interpretations, as the relation itself.  
 
A functional relation is restricted: if a tuple <x,y> is in the relation then no other tuple <x,z> 
with z different than y can be member of the relation.  

                                                      
1 The naming conventions follow Prolog 
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The relation friend is a functional relation and corresponds to a non-injective function. The 
distinction between functions and predicates is important. Functions designate generic 
computations that do not have an implementation, in the sense that a function is not 
associated with specific code able to perform the computation. It simply declares what can be 
the result of a computation. A predicate declares an unrestricted relationship that does not 
necessarily hide a computation.   
 
By convention, predicate and function identifiers start with a lower case letter. Moreover, if 
the tuple <x1,x2,…,xn> is an element of a relation r we write r(x1,x2,…,xn). In the binary 
case, the reading of r(x,y) is “x is (in) the relation r with y”, e.g. friend(fred,pussycat) 
can be read as fred is friend of pussycat.  
 
• Logical connectives: ⇒ (implication), ⇔ (bi-implication or equivalence), ∧(conjunction) 
∨(disjunction), ¬(negation). They have the usual meaning described by truth tables. The 
precedence of these connectors is (from highest to lowest): ¬, ∧, ∨, ⇒, ⇔. 
 
• Quantifiers: ∀(the universal quantifier that reads for all), ∃(the existential quantifier that 
reads exists). As far as the precedence is concerned we assume that the quantifiers have 
lower precedence than the logical connectors. 
 
Using the above symbols, terms, atomic sentences and sentences can be created according 
to the following syntax rules: 
 
term ::= function(term,...,term) | constant | variable 
 
atomic_sentence ::= predicate(term,...,term) | term = term 
 
sentence ::= atomic_sentence | (sentence) | ¬sentence |  
             sentence connective sentence |  
             quantifier variable,...,variable. sentence 
 
Sentences are considered as generic. They specify generic relationships and properties of 
generic objects that are subject to different interpretations for particular UoDs. Depending on 
interpretation and UoD these relationships and properties may be true or false.  
 
The equality term = term  is a way of declaring that the two terms stand for the same object. 
For example, pussycat = margot shows that pussycat is an alias name of a generic object 
identified as margot (a constant). 
 
Terms refer to objects whereas atomic sentences describe facts. For example, 
father(fred) is a term that under an appropriate interpretation stands for a functional 
relationship. The atomic sentence friend(father(fred),pussycat) shows that the father 
of fred (which is an unnamed object) is in relation friend with an object identified as 
pussycat. 
 
Sentences that use quantifiers have more descriptive power. For example, the sentence 
“everybody has at least a friend that is different than himself” can be encoded as: 
 

∀Y.∃X.(friend(X,Y) ∧ ¬(Y = X)) 
 
The universal quantifier has the same effect as the binding symbol λ in an expression from 
the Lambda calculus. It generalizes the domain of a variable in the sense that any object can 
substitute the bound variable. On the contrary, the variable bound by an existential quantifier 
stands for a specific object, possibly not unique, which can be substituted for the variable. 
Variables cannot appear free within sentences. They must be bound either universally or 
existentially. The variables bound by a quantifier have the quantified sentence as their scope.  
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The quantifiers have useful properties, similar to the properties of conjunction and disjunction. 
Such properties are the laws of De Morgan. Noting a sentence with P, we have: 
 
 ¬∀X.P ≡ ∃X.¬P  is the transcription of ¬(A ∧ B) ≡ ¬A ∨ ¬B 
¬ ∃X.P ≡ ∀X.¬P  is the transcription of ¬(A ∨ B) ≡ ¬A ∧ ¬B 
∀X.P ≡ ¬ ∃X.¬P  is the transcription of A ∧ B ≡ ¬(¬A ∨ ¬B) 
∃X.P  ≡ ¬∀X.¬P  is the transcription of A ∨ B ≡ ¬(¬A ∧ ¬B) 
 
 
Validity, satisfiability and proof 
 
Assume that, in a description we have the sentences: 
 
1.1) ∀X.friend(fred,X)       -- fred is a friend of everybody 
1.2) pet(pussycat)           -- pussycat is a pet 
1.3) ∀Y.∃X.(pet(Y) ∧ friend(X,Y) ∧ ¬(Y = X)) 
                             -- any pet has a friend different than itself 
What can we infer intuitively from the sentences above?  
 
From (1.3) and (1.2) we derive that, in a particular case, Y can be bound to pussycat. The 
sentence becomes  
 
1.4) ∃X.(pet(pussycat) ∧ friend(X,pussycat) ∧ ¬(pussycat = X)) 
 
From (1.1) and (1.4) we can bound X to fred and decide that the sentence (1.3) is true for 
this particular case. Since it is the only particular case in our description, we conclude that the 
sentence (1.3) is true in our description if the sentences (1.1) and (1.2) are true. This last 
commitment depends on the particular UoD to which we apply the description and on the 
interpretation of the constants and predicates from the description. Therefore, the sentence 
(1.3) is not valid (true in general). Instead, we say that it is satisfiable.  
 
A sentence is valid if and only if it is true under all possible interpretations in all possible 
UoDs. In other words, the sentence is true regardless of any of its possible meanings. A 
sentence is satisfiable if and only if there is some interpretation in some UoD for which the 
sentence is true.  
 
In the example above, all three sentences are satisfiable but not valid. A valid sentence such 
as  friend(fred,bibo) ∨ ¬friend(fred,bibo) is called a tautology. 
 
The intuitive derivation of the fact that pussycat has fred as a friend introduces additional 
important elements of the first-order logic (and of any logic system): the inference procedure 
and the proof procedure. Call Descr a set of sentences in FOL. 
  
If a sentence S is true whenever the sentences of the description Descr are true we say that 
S is entailed by Descr, and we write Descr ⎥= S. A mechanic procedure inf able to derive 
sentences entailed by Descr is an inference procedure. We write Descr ⎥=inf S to specify 
that S is an entailed sentence of Descr and that S is derived by inf. If the inference 
procedure inf produces only sentences entailed by Descr then it is sound or truth 
preserving. If inf is able to generate all sentences entailed by Descr then it is complete.  
 
Given the sentences of a description Descr, we can prove of disprove a given sentence S. 
Inference procedures are at the base of the proof procedure. The proof procedure uses a 
given set of inference procedures (or inference rules) and a specific control strategy for 
conducting the inference. If the proof procedure is able to prove only sentences entailed by 
Descr it is sound. It is complete if it can prove all sentences entailed by Descr.   
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Gödel completeness theorem shows that in the first-order logic any sentence that is entailed 
by a set of sentences can be proved from that set, i.e. there exists a complete proof 
procedure for the first-order logic. A complete and sound inference procedure, which can be 
used in a complete proof procedure, has been found by Robinson in 1965, 35 years after 
Gödel. It is called resolution. Resolution and all other inference procedures for FOL are 
based on unification. Moreover, mechanical proof is eased if the sentences have a special 
format called canonical or normal form. 
 
 
Unification 
 
The process of unification of two formulae has been used in type synthesis. We recall it in the 
context of FOL. Two atomic sentences t1 and t2 unify if they have the same predicate and 
there exists a substitution S={v1/x1, v2/x2,...,vn/xn} for the variables x1,x2,...,xn 
within t1 and t2 such that after performing the substitution of xi by vi within both t1 and 
t2, t1 becomes the same as t2. For example, observe that  
 

t1= friend(father(X),Y) and t2=friend(Z,father(Z)) 
 
unify under the substitution S ={father(X)/Z, father(Z)/Y}. This substitution is the most 
general unifier of t1 and t2. Under the substitution S the atomic sentences are identical   
 

t1/S ≡ t2/S ≡ friend(father(X),father(father(X))). 
 
Unification is proved NP-complete. Unification can produce cyclic results. In the unification 
process of friend(X,father(X)) with friend(father(Y),Y) produces the substitution 
S={father(Y)/X, father(X)/Y} which means that X corresponds to father(father(X)).   
The unification algorithm must perform a so called occurrence check in order to avoid 
producing cyclic objects and, eventually, for avoiding the non termination of the unification 
itself. The occurrence check searches for occurrences of a variable within the value bound to 
that variable as result of the unification process. This process is time costly. 
 
 
Normal forms 
 
• A set of sentences is in conjunctive normal form (CNF) if each sentence is a disjunction 

of atoms. An atom is an atomic sentence eventually negated. All the sentences in the set 
are assumed to be implicitly connected by the conjunction connector (the CNF name 
derives from this convention).  

 
• A set of sentences is in implicative normal form (INF) if each sentence has the structure 

(P ∧ Q ∧ …) ⇒ (P’ ∨ Q’ ∨…). Therefore, it is an implication with a conjunction of 
atoms on the left hand side and a disjunction of atoms on the right hand side.  

 
There is a particular format of CNF sentences. This format is restrictive but plays a major role 
in logic programming.  
 
• A sentence is a Horn sentence (or a Horn clause) if it is a disjunction of atoms with only 

one positive atom (non-negated atom). The sentence ¬q1 ∨ ¬q2... ∨ ¬qn ∨ q is a 
Horn sentence and corresponds to the implication (q1 ∧ q2 ∧...∧ qn) ⇒ q. 
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In both CNF and INF normal forms variables appear non-bound. They are considered 
universally bound implicitly. As an exercise, consider the sentences below and their CNF and 
INF equivalent. 
 
     ∀X,Y.(father(X,Y) ∨ mother(X,Y) ⇒ parent(X,Y)) 
     ∀X,Y,Z.(parent(Z,X) ∧ parent(Z,Y) ⇒ sibling(X,Y)) 
 
They can be rewritten as the following Horn clauses: 
 
CNF: ¬father(X,Y) ∨ parent(X,Y) 
     ¬mother(X,Y) ∨ parent(X,Y) 
     ¬parent(Z,X) ∨ ¬parent(Z,Y) ∨ sibling(X,Y) 
 
INF: father(X,Y) ⇒ parent(X,Y) 
     mother(X,Y) ⇒ parent(X,Y) 
     parent(Z,X) ∧ parent(Z,Y) ⇒ sibling(X,Y) 
 
 
Any FOL sentence can be converted into an equivalent set of sentences in normal form. Here 
the term equivalent means with the same meaning. Consider that the sentence converted is 
part of a set of sentences called Descr. The rules for converting a sentence into a set of 
sentences in CNF are: 
 
1. Eliminate implications. A sentence p ⇒ q is replaced by ¬p ∨ q.  
 
2. Move negation inwards using De Morgan rules.  

¬(p ∨ q) is replaced by ¬p ∧ ¬q 
¬(p ∧ q) is replaced by ¬p ∨ ¬q 
¬∀X.P is replaced by ∃X.¬P 
¬ ∃X.P is replaced by ∀X.¬P 

 
3. Rename variables. For sentences that bind the same variable more than once, the name 
of the variable is changed to a unique name for each separate binding. For instance, 
∀X.P(X) ∨ ∀X.Q(X) ∧ ∃X.R(X) is transformed into ∀X.P(A) ∨ ∀X’.Q(X’) ∧ ∃X”.R(X”). 
 
4. Move quantifiers to the top of the sentence preserving the order in which they occur. 
Since the variables they bind are distinct, the sentence preserves its meaning. A sentence 
that has all the quantifiers at the top is in prenex form. 
 
5. Remove the existential quantifiers. 
• For an existential quantifier that is not preceded by any universal quantifier simply 

replace the occurrences of the bound variable by a unique constant (not used elsewhere 
in Descr). 

• For an existential quantifier that is in the scope of several universal quantifiers, replace 
the occurrences of an existentially bound variable by a Skolem term f(x1,x2,...,xn) 
where x1,x2,...,xn are the variables bound by the universal quantifiers in the order 
they appear at the head of the sentence. The function f (not used elsewhere in Descr) 
designates a function which “computes” a unique value for the existentially bound 
variable depending on the values of x1,x2,...,xn.  

 
For example, in the sentence ∀Y.∃X.(pet(Y) ∧ friend(X,Y)) the existential quantifier can 
be dropped by replacing all the occurrences of the variable X by the Skolem term 
a_friend_of(Y). The sentence becomes  
 

∀Y.(pet(Y) ∧ friend(a_friend_of(Y),Y)) 
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6. Drop the universal quantifiers and pretend that all variables are universally quantified 
implicitly. 

pet(Y) ∧ friend(a_friend_of(Y),Y) 
 
7. Distribute ∧ over ∨: (x ∧ y) ∨ z is replaced by (x ∨ z) ∧ (y ∨ z). 
 
8. Flatten nested conjunctions and disjunctions. (x ∧ y) ∧ z is replaced by  x ∧ y ∧ z 
and (x ∨ y) ∨ z is replaced by  x ∨ y ∨ z. 
 
The sentence is in CNF. One more step is necessary for obtaining the INF format.  
 
9. For each disjunction, group the negated atoms ¬x1 ∨...∨ ¬xn and the positive atoms 
y1 ∨...∨ ym of the disjunction and replace the disjunction by the implication x1 ∧...∧ xn 
⇒ y1 ∨...∨ ym. 

 
 
Inference rules 
 
A sound inference rule (or procedure) derives, starting from a given set of sentences, a new 
sentence entailed by the sentences in the set. The simplest inference rule is modus ponens. 
 
   p1 ∧ p2 ∧...∧ pn     (q1 ∧ q2 ∧...∧ qn)⇒q     (unify(pi,qi), i=1,n) = S 
   ______________________________________________________________________ 
                                 Subst(S,q) 
 
The rule reads: if the sentences pi are true and the antecedents qi of the implication are true 
under the unification substitution S (that unify pi and qi for all i=1,n) then the sentence 
Subst(S,q) is true. Modus ponens is simple but is not complete. The reason is simple: not 
all sentences can be written as Horn sentences. Therefore, the rule cannot be applied and 
the sentences entailed by non-Horn sentences cannot be inferred. 
 
A complete inference procedure is resolution. The generalized resolution rule for INF is: 
 
    p1 ∧...∧ pi ∧...∧ pn1 ⇒ r1 ∨...∨ rn2     

    s1 ∧...∧ sn3 ⇒ q1 ∨ q2 ∨...∨ qk ∨ ...∨ qn4        unify(pi,qk) = S 
   ___________________________________________________________________ 
        Subst(S, p1 ∧...∧ pi-1 ∧ pi+1 ∧...∧ pn1 ∧ s1 ∧...∧ sn3 ⇒  

                 r1 ∨...∨ rn2 ∨ q1 ∨...∨ qk-1 ∨ qk+1 ∨ ...∨ qn) 
 
For the particular case of Horn clauses the resolution rule is: 
 
          (q1 ∧ q2 ∧...∧ qn1) ⇒ q   

          (p1 ∧ p2 ∧...∧ q’ ∧...∧ pn2) ⇒ r     unify(q,q’) = S 
        ________________________________________________________ 
 
           Subst(S, p1 ∧ p2 ∧...∧ pn2 ∧ q1 ∧ q2 ∧...∧ qn1 ⇒ r) 

 
This last rule is used in Prolog as the base of the proof procedure. Proof procedures are built 
using inference rules the application of which is decided by specific control strategies. The 
proof problem is: given a set of initial sentences, call it Descr2, and a sentence P, find out if 

                                                      
2 Descr is considered a FOL description of a UoD, which can be generic or particular. 
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Descr can entail P. The sentences in Descr can be classified into axioms and theorems. An 
axiom specifies a basic fact of the UoD and cannot be derived from the rest of the sentences 
in Descr. A theorem is a sentence entailed by the axioms and other theorems of Descr. By 
convention, an axiom x that corresponds to the implication true ⇒ x, will be represented 
simply as x. It is also useful to observe that ¬x ca be rewritten x ⇒ false. 
 
 
An example of proof by refutation 
 
Consider the following FOL description, which is a modified version of an example from the 
book of Russell and Norvig “Artificial Intelligence - A Modern Approach”. 
 
∀P,W,Q.(person(P)∧weapon(W)∧person(Q)∧hostile(Q)∧sells(P,W,Q)⇒ criminal(P)) 
∀M.(missile(M) ⇒ weapon(M)) 
∀W,P.(person(P) ∧ owns(P,W) ⇒ ∃Q.(person(Q) ∧ sells(Q,W,P))) 
∀P.(person(P) ∧ ∀Q.(person(Q) ∧ hates(P,Q)) ⇒ hostile(P)) 
 
owns(foo,m1) 
missile(m1) 
person(foo) 
∀P.hates(foo,P) 
 
Applying the algorithm for converting FOL sentences to CNF and INF, the description above 
can be rewritten as the following set of Horn clauses. 
 
person(P)∧weapon(W)∧person(Q)∧hostile(Q)∧sells(P,W,Q)⇒ criminal(P) 
missile(M) ⇒ weapon(M) 
person(P) ∧ owns(P,W) ⇒ person(seller(W,P)) 
person(P) ∧ owns(P,W) ⇒ sells(seller(W,P),W,P) 
person(P) ∧ person(Q) ∧ hates(P,Q) ⇒ hostile(P) 
 
owns(foo,m1) 
missile(m1) 
person(foo) 
hates(foo,P) 
 
Above, seller(W,P) is the Skolem term introduced by the elimination of the existential 
quantifier. The problem is to check if, according to the description, is there a criminal. 
 
A complete proof procedure using resolution is by refutation. We consider that the goal g to 
be proved is not true and then try to obtain a contradiction using the sentences of the given 
description, i.e. (Descr ∧ ¬g ⇒ false) ⇔ (Descr ⇒ g). Hence, assume there is no 
criminal, i.e. ¬criminal(X) or, equivalently, criminal(X) ⇒ false and add this clause to 
the description above. 
 
The inference rule applied is the resolution for Horn clauses. The order of resolution steps 
follows a backward chaining path, from the goal to the axioms. In addition, the order of these 
steps is selected in such a way as to avoid backtracking and to shorten as much as possible 
the resolvents.  
 
During the proof a current substitution called S is constantly updated. It cumulates the 
substitutions resulted from all the valid unifying processes performed so far along the current 
path traversed in the AND/OR proof tree. Recall that v/X means the variable X is bound to v 
and notice that v can be a variable. All substitutions are performed in situ, although this is not 
happening in the real proof process (it will be difficult to backtrack). For each use of a Horn 
clause new variables are created for that clause. The resolvent is written in italic. 
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negated goal: criminal(X) ⇒ false 
 

criminal(X) ⇒ false       
person(X)∧weapon(Y)∧person(Q)∧hostile(Q)∧sells(P,W,Q)⇒ criminal(P) 

S={X/P} 
____________________________________________________________________________ 
person(X)∧weapon(W)∧person(Q)∧hostile(Q)∧sells(X,W,Q) ⇒ false 
person(foo)                                  

S= {foo/Q,X/P} 
____________________________________________________________________________ 
person(X)∧weapon(W)∧hostile(foo)∧sells(X,W,foo) ⇒ false 
misile(M) ⇒ weapon(M)                    

S= {M/W,foo/Q,X/P} 
____________________________________________________________________________ 
person(X)∧missile(M)∧hostile(foo)∧sells(X,W,foo) ⇒ false 
missile(m1)                               

S={m1/M,m1/W,foo/Q,X/P} 
____________________________________________________________________________ 
person(X)∧hostile(foo)∧sells(X,m1,foo) ⇒ false 
person(P1)∧owns(P1,W1) ⇒ person(seller(W1,P1)) 

S={seller(W1,P1)/X,m1/M,m1/W,foo/Q,seller(W1,P1)/P} 
____________________________________________________________________________ 
person(P1)∧owns(P1,W1)∧hostile(foo)∧sells(seller(W1,P1),m1,foo) ⇒ false 
owns(foo,m1) 

S={foo/P1,m1/W1,seller(m1,foo)/X,m1/M,m1/W,foo/Q,seller(m1,foo)/P} 
____________________________________________________________________________ 
person(foo)∧hostile(foo)∧sells(seller(m1,foo),m1,foo) ⇒ false 
person(foo) 

S={foo/P1,m1/W1,seller(m1,foo)/X,m1/M,m1/W,foo/Q,seller(m1,foo)/P} 
____________________________________________________________________________ 
hostile(foo)∧sells(seller(m1,foo),m1,foo) ⇒ false 
person(P2)∧person(Q2)∧hates(P2,Q2) ⇒ hostile(P2) 

S={foo/P2,foo/P1,m1/W1,seller(m1,foo)/X,m1/M,m1/W,foo/Q,seller(m1,foo)/P} 
____________________________________________________________________________ 
person(Q2)∧hates(foo,Q2)∧sells(seller(m1,foo),m1,foo) ⇒ false 
hates(foo,P3) 

S={P3/Q2,foo/P2,foo/P1,m1/W1,seller(m1,foo)/X,m1/M, 
m1/W,foo/Q,seller(m1,foo)/P} 

____________________________________________________________________________ 
person(P3)∧sells(seller(m1,foo),m1,foo) ⇒ false 
person(foo) 

S={foo/P3,foo/Q2,foo/P2,foo/P1,m1/W1,seller(m1,foo)/X, 
m1/M,m1/W,foo/Q,seller(m1,foo)/P} 

____________________________________________________________________________ 
sells(seller(m1,foo),m1,foo) ⇒ false  
person(P4)∧owns(P4,W4) ⇒ sells(seller(W4,P4),W4,P4) 

S={foo/P4,m1/W4,foo/P3,foo/Q2,foo/P2,foo/P1,m1/W1, 
seller(m1,foo)/X,m1/M,m1/W,foo/Q,seller(m1,foo)/P} 

____________________________________________________________________________ 
person(foo)∧owns(foo,m1) ⇒ false 
person(foo) 

S={foo/P4,m1/W4,foo/P3,foo/Q2,foo/P2,foo/P1,m1/W1, 
seller(m1,foo)/X,m1/M,m1/W,foo/Q,seller(m1,foo)/P} 

____________________________________________________________________________ 
owns(foo,m1) ⇒ false 
owns(foo,m1) 

S={foo/P4,m1/W4,foo/P3,foo/Q2,foo/P2,foo/P1,m1/W1, 
seller(m1,foo)/X,m1/M,m1/W,foo/Q,seller(m1,foo)/P} 

____________________________________________________________________________ 
true ⇒ false i.e. false 

contradiction 
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Therefore, there is a criminal in the story. Who? Look at the value bound to the variable X of 
the goal criminal(X). Its value is seller(m1,foo). Although we don’t know precisely who 
is this person, we have been able to prove that such a person exists. 
 
 
 

AND

AND 

pi1 ⇒ false 

pi1 ∧ pi2 ∧...⇒ qi 
unify(q,qi) 

pim ⇒ false 

OR

OR 
OR 

sj1 ∧ sj2...⇒ rj 
unify(pi1,rj) 

q ⇒ false  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. A proof AND-OR tree 
 
In the presence of a control procedure the proof is no longer a linear structure as above. 
Some paths followed in the process of proof may fail. In this case backtracking occurs in 
order to try other possible resolvents. The structure of the proof process is an AND/OR tree. 
An AND node corresponds to a conjunction of resolvents. An OR node corresponds to the 
choice of the sentence to be used for producing a new resolvent. 
 
To have a complete proof procedure the tree traversal should be breadth-first oriented. The 
depth-first traversal is making the proof procedure incomplete due to possible infinite paths 
that are created by circular sentences. It is interesting to notice that in the example above 
there are such infinite paths created by the circular clause: 
 

person(P) ∧ owns(P,W) ⇒ person(seller(W,P)) 
 
In a depth-first traversal of the proof tree we could enter an infinite loop trying to resolve the 
goal person(P). 
 
person(P) ⇒ false 
person(P1) ∧ owns(P1,W1) ⇒ person(seller(W1,P1)) 

S={seller(W1,P1)/P} 
____________________________________________________________________________ 
person(P1) ∧ owns(P1,W1) ⇒ false 
person(P2) ∧ owns(P2,W2) ⇒ person(seller(W2,P2)) 

S={seller(W2,P2)/P1,seller(W1,seller(W2,P2))/P} 
_____________________________ 
person(P2) ∧ owns(P2,W2) ∧ owns(P1,W1) ⇒ false 
. . . 
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Control strategies 
 
There are two main control strategies: forward chaining and backward chaining. Forward 
chaining is similar to the Agenda control mechanism in CLIPS. It allows an inference 
procedure to derive all sentences that can be derived starting from Descr. It stops when the 
goal to be proved is eventually derived. Backward chaining focuses the application of the 
inference rule only on the relevant part of Descr, i.e. on these sentences that can effectively 
contribute to the derivation of the given goal.  
 
The backward-chaining algorithm for Horn clauses resolution is given in Caml below. Except 
for the unification, it is close the executable kernel of a very simple theorem prover. The 
Backward_chaining function works with sentences that do not contain variables. As an 
exercise, the unify function could be rewritten to work with sentences containing variables.  
 
The function Backward_chaining works with a list of rules, the rules from Descr. Each rule is 
represented as a list; the head of the list contains the conclusion of the rule, the tail contains 
the premises. The result returned is fail or succeed(substitution), where substitution 
cumulates all the substitutions resulted from the unification process performed throughout the 
inference process. In a simple (but inefficient) implementation substitution can be an 
association list containing pairs (variable,value). 
 
The control engine is the local function solve. It gets a list of goals, a list of Horn clauses 
(called here rules), and the current substitution. If the list of goals is exhausted, i.e. all goals 
are proved, the result is suceed(final_substitution). If the all rules are tried without 
succeeding to prove the goals, fail is signaled. For each goal, solve tries all rules the 
conclusion of which can unify with the goal (recall that the goal stands for a negated sentence 
while the conclusion is a positive sentence). For each applicable rule, the premises of the rule 
are appended at the end of the list of goals and solve is called recursively with the new 
goals, all the rules in Descr, and the new substitution. In this way, the proof tree is traversed 
breadth-first. 
 
type 'subst Result = fail | succeed of 'subst list;; 
 
let unify(atom1,atom2,substitution) =  
    if atom1 = atom2 then succeed(substitution) else fail;; 
unify : 'a * 'a * 'b list -> 'b Result = <fun> 
 
let  conclusion = hd and  premises = tl;; 
conclusion : 'a list -> 'a = <fun> 
premises : 'a list -> 'a list = <fun> 
 
let Backward_chaining all_rules goal = 
    let rec solve =  
        fun []    rules substitution -> succeed(substitution) 
         |  goals []    substitution -> fail 
         |  (goal::rest_goals as goals) (rule::rest_rules) substitution -> 
                match unify(goal,conclusion(rule),substitution) 
                with 
                    fail -> solve goals rest_rules substitution 
                 |  succeed(new_substitution) ->   
                        match solve (rest_goals@(premises rule)) all_rules 
                                    new_substitution 
                        with 
                            fail -> solve goals rest_rules substitution 
                          | succeed(new_subst) -> succeed(new_subst) 
    in  
       solve [goal] all_rules [];; 
Backward_chaining : 'a list list -> 'a -> 'b Result = <fun> 
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Observe that if Backward_chaining would be a coroutine, we could save the status of the 
proof tree while returning a solution. The traversal of the tree could be resumed from the 
interruption point producing step by step all the possible proofs of the given goal. This is what 
happens in Prolog. 
 
The conclusion and the premises of each rule are atomic sentences represented as values of 
sum types. The representation is close to what a syntax checker would produce. 
 
type Term =  constant of string  
           | var of string  
           | funct of string * Term list;; 
 
type AtomicSentence = predicate of string * Term list;; 
 
let Descr = [  
   (* friend(bibo,pussycat) ∧friend(pussycat,fred) => friend(bibo,fred) *) 
      [predicate("friend",[constant "Bibo"; constant "Fred"]); 
            predicate("friend",[constant "Bibo"; constant "Pussycat"]); 
            predicate("friend",[constant "Pussycat"; constant "Fred"])]; 
 
   (* friend(bibo,pussycat) *) 
      [predicate("friend",[constant "Bibo"; constant "Pussycat"])]; 
 
   (* friend(pussycat,fred) *) 
      [predicate("friend",[constant "Pussycat"; constant "Fred"])]  
];; 
 
let goal = predicate("friend",[constant "Bibo"; constant "Fred"]);;       
 
Backward_chaining Descr goal;; 
- : '_a Result = succeed [] 
 
The backward-chaining control strategy combined with the refutation-based resolution - as 
the proof procedure - offers an efficient proof engine for Horn clauses. There are logic 
programming languages (such as Prolog) that use this proof engine. What they add, apart 
from a convenient syntax, is a set of control mechanisms of the inference engine.  
 
A program in a logic programming language consists of a set of axioms and inference rules 
that can be used to prove given goals. The axioms, rules, and goals are sentences that state 
properties and relationships of the objects of a given UoD. The aim of the program is merely 
to prove rather than compute. This is the reason why logic programming offers less on the 
side of arithmetic and more on the side of symbolic representation and on the way of 
combining formulae. A remarkable representative of the logic-programming paradigm is 
Prolog. 
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