
Cristian Giumale / Lecture Notes 1

First-Order Logic and Logic Programming

The programming languages based on the Lambda calculus model of computation are
convenient for describing functional relationships that hold between the objects of a problem.
The focus is on computing functions. For this reason, the programs still preserve a strong
procedural flavor: input data are transformed into output data by means of computations
specific to the type of the data. Associative languages, such as CLIPS, are more permissive.
There are no inputs and no outputs and data are uniformly represented in a symbolic way as
facts of a factual base. The program infers all facts that can be derived from the current facts
according to a fact-driven set of rules. However, facts have a very simple structure and
cannot capture complex relationships between objects. Moreover, the inference procedure
does not suit those applications where a specific goal has to be achieved regardless of other
goals that could be potentially satisfied according to the current factual base.

Apart from these classes of languages, logic programming languages provide enhanced
descriptive power of any kind of relationship between the problem objects and, moreover, are
equipped with efficient inference procedures proved complete and sound. The focus of a
logic program is not restricted to the computation of the correct values of some properties of
given objects. The main focus is to derive new relationships between objects, starting from a
set of given relationships. The theoretical base of such languages is the First-Order Logic
(abbreviated FOL, and equivalently known as first-order predicate calculus).

The syntax and semantics of first-order logic

In a similar way to Lambda calculus, first-order logic can be seen as a language in which
sentences are constructed according to strict syntactic rules and have a given interpretation
varying with the application domain. In what follows we prefer the term universe of discourse
(UoD) instead of solved problem. The reason relies on the generic descriptive power of
predicate calculus. What is described is a generic set of relationships between generic
objects that can be subject to different interpretations according to different applications. The
UoD can be any problem, domain, and world the sentences of a FOL description may apply
to. This is similar to the Markov algorithmic machine, where the algorithms are working with
generic alphabets, constants and variables. The basic symbols used to build sentences are:

• Constants: stand for given (generic) objects from the UoD (similar to the constants in the
Markov algorithmic machine). By convention, the constants are represented by identifiers
starting with a small-case letter1; e.g., pussycat is a constant that can represent a particular
cat or a special beloved person.

• Variables: stand for generic objects from the UoD. A variable is represented as an
identifier starting with a capital letter.

• Functional and predicate symbols are simply names of relations between the objects of
the UoD. A functional identifier, called simply a function, describes a functional relationship. A
predicate corresponds to any kind of relation. Recall that an n-ary relation over a set Sn =
S×S×…n times…×S is a subset of tuples <x1,x2,…,xn>, xi∈S from Sn. Assume that friend is
such a binary relation friend={<fred,pussycat>, <bibo,pussycat>, <teo,pussycat>}.
Notice that the constants can have different interpretations, as the relation itself.

A functional relation is restricted: if a tuple <x,y> is in the relation then no other tuple <x,z>
with z different than y can be member of the relation.

1 The naming conventions follow Prolog

Cristian Giumale / Lecture Notes 2

The relation friend is a functional relation and corresponds to a non-injective function. The
distinction between functions and predicates is important. Functions designate generic
computations that do not have an implementation, in the sense that a function is not
associated with specific code able to perform the computation. It simply declares what can be
the result of a computation. A predicate declares an unrestricted relationship that does not
necessarily hide a computation.

By convention, predicate and function identifiers start with a lower case letter. Moreover, if
the tuple <x1,x2,…,xn> is an element of a relation r we write r(x1,x2,…,xn). In the binary
case, the reading of r(x,y) is “x is (in) the relation r with y”, e.g. friend(fred,pussycat)
can be read as fred is friend of pussycat.

• Logical connectives: ⇒ (implication), ⇔ (bi-implication or equivalence), ∧(conjunction)
∨(disjunction), ¬(negation). They have the usual meaning described by truth tables. The
precedence of these connectors is (from highest to lowest): ¬, ∧, ∨, ⇒, ⇔.

• Quantifiers: ∀(the universal quantifier that reads for all), ∃(the existential quantifier that
reads exists). As far as the precedence is concerned we assume that the quantifiers have
lower precedence than the logical connectors.

Using the above symbols, terms, atomic sentences and sentences can be created according
to the following syntax rules:

term ::= function(term,...,term) | constant | variable

atomic_sentence ::= predicate(term,...,term) | term = term

sentence ::= atomic_sentence | (sentence) | ¬sentence |
 sentence connective sentence |
 quantifier variable,...,variable. sentence

Sentences are considered as generic. They specify generic relationships and properties of
generic objects that are subject to different interpretations for particular UoDs. Depending on
interpretation and UoD these relationships and properties may be true or false.

The equality term = term is a way of declaring that the two terms stand for the same object.
For example, pussycat = margot shows that pussycat is an alias name of a generic object
identified as margot (a constant).

Terms refer to objects whereas atomic sentences describe facts. For example,
father(fred) is a term that under an appropriate interpretation stands for a functional
relationship. The atomic sentence friend(father(fred),pussycat) shows that the father
of fred (which is an unnamed object) is in relation friend with an object identified as
pussycat.

Sentences that use quantifiers have more descriptive power. For example, the sentence
“everybody has at least a friend that is different than himself” can be encoded as:

∀Y.∃X.(friend(X,Y) ∧ ¬(Y = X))

The universal quantifier has the same effect as the binding symbol λ in an expression from
the Lambda calculus. It generalizes the domain of a variable in the sense that any object can
substitute the bound variable. On the contrary, the variable bound by an existential quantifier
stands for a specific object, possibly not unique, which can be substituted for the variable.
Variables cannot appear free within sentences. They must be bound either universally or
existentially. The variables bound by a quantifier have the quantified sentence as their scope.

Cristian Giumale / Lecture Notes 3

The quantifiers have useful properties, similar to the properties of conjunction and disjunction.
Such properties are the laws of De Morgan. Noting a sentence with P, we have:

 ¬∀X.P ≡ ∃X.¬P is the transcription of ¬(A ∧ B) ≡ ¬A ∨ ¬B
¬ ∃X.P ≡ ∀X.¬P is the transcription of ¬(A ∨ B) ≡ ¬A ∧ ¬B
∀X.P ≡ ¬ ∃X.¬P is the transcription of A ∧ B ≡ ¬(¬A ∨ ¬B)
∃X.P ≡ ¬∀X.¬P is the transcription of A ∨ B ≡ ¬(¬A ∧ ¬B)

Validity, satisfiability and proof

Assume that, in a description we have the sentences:

1.1) ∀X.friend(fred,X) -- fred is a friend of everybody
1.2) pet(pussycat) -- pussycat is a pet
1.3) ∀Y.∃X.(pet(Y) ∧ friend(X,Y) ∧ ¬(Y = X))
 -- any pet has a friend different than itself
What can we infer intuitively from the sentences above?

From (1.3) and (1.2) we derive that, in a particular case, Y can be bound to pussycat. The
sentence becomes

1.4) ∃X.(pet(pussycat) ∧ friend(X,pussycat) ∧ ¬(pussycat = X))

From (1.1) and (1.4) we can bound X to fred and decide that the sentence (1.3) is true for
this particular case. Since it is the only particular case in our description, we conclude that the
sentence (1.3) is true in our description if the sentences (1.1) and (1.2) are true. This last
commitment depends on the particular UoD to which we apply the description and on the
interpretation of the constants and predicates from the description. Therefore, the sentence
(1.3) is not valid (true in general). Instead, we say that it is satisfiable.

A sentence is valid if and only if it is true under all possible interpretations in all possible
UoDs. In other words, the sentence is true regardless of any of its possible meanings. A
sentence is satisfiable if and only if there is some interpretation in some UoD for which the
sentence is true.

In the example above, all three sentences are satisfiable but not valid. A valid sentence such
as friend(fred,bibo) ∨ ¬friend(fred,bibo) is called a tautology.

The intuitive derivation of the fact that pussycat has fred as a friend introduces additional
important elements of the first-order logic (and of any logic system): the inference procedure
and the proof procedure. Call Descr a set of sentences in FOL.

If a sentence S is true whenever the sentences of the description Descr are true we say that
S is entailed by Descr, and we write Descr ⎥= S. A mechanic procedure inf able to derive
sentences entailed by Descr is an inference procedure. We write Descr ⎥=inf S to specify
that S is an entailed sentence of Descr and that S is derived by inf. If the inference
procedure inf produces only sentences entailed by Descr then it is sound or truth
preserving. If inf is able to generate all sentences entailed by Descr then it is complete.

Given the sentences of a description Descr, we can prove of disprove a given sentence S.
Inference procedures are at the base of the proof procedure. The proof procedure uses a
given set of inference procedures (or inference rules) and a specific control strategy for
conducting the inference. If the proof procedure is able to prove only sentences entailed by
Descr it is sound. It is complete if it can prove all sentences entailed by Descr.

Cristian Giumale / Lecture Notes 4

Gödel completeness theorem shows that in the first-order logic any sentence that is entailed
by a set of sentences can be proved from that set, i.e. there exists a complete proof
procedure for the first-order logic. A complete and sound inference procedure, which can be
used in a complete proof procedure, has been found by Robinson in 1965, 35 years after
Gödel. It is called resolution. Resolution and all other inference procedures for FOL are
based on unification. Moreover, mechanical proof is eased if the sentences have a special
format called canonical or normal form.

Unification

The process of unification of two formulae has been used in type synthesis. We recall it in the
context of FOL. Two atomic sentences t1 and t2 unify if they have the same predicate and
there exists a substitution S={v1/x1, v2/x2,...,vn/xn} for the variables x1,x2,...,xn
within t1 and t2 such that after performing the substitution of xi by vi within both t1 and
t2, t1 becomes the same as t2. For example, observe that

t1= friend(father(X),Y) and t2=friend(Z,father(Z))

unify under the substitution S ={father(X)/Z, father(Z)/Y}. This substitution is the most
general unifier of t1 and t2. Under the substitution S the atomic sentences are identical

t1/S ≡ t2/S ≡ friend(father(X),father(father(X))).

Unification is proved NP-complete. Unification can produce cyclic results. In the unification
process of friend(X,father(X)) with friend(father(Y),Y) produces the substitution
S={father(Y)/X, father(X)/Y} which means that X corresponds to father(father(X)).
The unification algorithm must perform a so called occurrence check in order to avoid
producing cyclic objects and, eventually, for avoiding the non termination of the unification
itself. The occurrence check searches for occurrences of a variable within the value bound to
that variable as result of the unification process. This process is time costly.

Normal forms

• A set of sentences is in conjunctive normal form (CNF) if each sentence is a disjunction

of atoms. An atom is an atomic sentence eventually negated. All the sentences in the set
are assumed to be implicitly connected by the conjunction connector (the CNF name
derives from this convention).

• A set of sentences is in implicative normal form (INF) if each sentence has the structure

(P ∧ Q ∧ …) ⇒ (P’ ∨ Q’ ∨…). Therefore, it is an implication with a conjunction of
atoms on the left hand side and a disjunction of atoms on the right hand side.

There is a particular format of CNF sentences. This format is restrictive but plays a major role
in logic programming.

• A sentence is a Horn sentence (or a Horn clause) if it is a disjunction of atoms with only

one positive atom (non-negated atom). The sentence ¬q1 ∨ ¬q2... ∨ ¬qn ∨ q is a
Horn sentence and corresponds to the implication (q1 ∧ q2 ∧...∧ qn) ⇒ q.

Cristian Giumale / Lecture Notes 5

In both CNF and INF normal forms variables appear non-bound. They are considered
universally bound implicitly. As an exercise, consider the sentences below and their CNF and
INF equivalent.

 ∀X,Y.(father(X,Y) ∨ mother(X,Y) ⇒ parent(X,Y))
 ∀X,Y,Z.(parent(Z,X) ∧ parent(Z,Y) ⇒ sibling(X,Y))

They can be rewritten as the following Horn clauses:

CNF: ¬father(X,Y) ∨ parent(X,Y)
 ¬mother(X,Y) ∨ parent(X,Y)
 ¬parent(Z,X) ∨ ¬parent(Z,Y) ∨ sibling(X,Y)

INF: father(X,Y) ⇒ parent(X,Y)
 mother(X,Y) ⇒ parent(X,Y)
 parent(Z,X) ∧ parent(Z,Y) ⇒ sibling(X,Y)

Any FOL sentence can be converted into an equivalent set of sentences in normal form. Here
the term equivalent means with the same meaning. Consider that the sentence converted is
part of a set of sentences called Descr. The rules for converting a sentence into a set of
sentences in CNF are:

1. Eliminate implications. A sentence p ⇒ q is replaced by ¬p ∨ q.

2. Move negation inwards using De Morgan rules.

¬(p ∨ q) is replaced by ¬p ∧ ¬q
¬(p ∧ q) is replaced by ¬p ∨ ¬q
¬∀X.P is replaced by ∃X.¬P
¬ ∃X.P is replaced by ∀X.¬P

3. Rename variables. For sentences that bind the same variable more than once, the name
of the variable is changed to a unique name for each separate binding. For instance,
∀X.P(X) ∨ ∀X.Q(X) ∧ ∃X.R(X) is transformed into ∀X.P(A) ∨ ∀X’.Q(X’) ∧ ∃X”.R(X”).

4. Move quantifiers to the top of the sentence preserving the order in which they occur.
Since the variables they bind are distinct, the sentence preserves its meaning. A sentence
that has all the quantifiers at the top is in prenex form.

5. Remove the existential quantifiers.
• For an existential quantifier that is not preceded by any universal quantifier simply

replace the occurrences of the bound variable by a unique constant (not used elsewhere
in Descr).

• For an existential quantifier that is in the scope of several universal quantifiers, replace
the occurrences of an existentially bound variable by a Skolem term f(x1,x2,...,xn)
where x1,x2,...,xn are the variables bound by the universal quantifiers in the order
they appear at the head of the sentence. The function f (not used elsewhere in Descr)
designates a function which “computes” a unique value for the existentially bound
variable depending on the values of x1,x2,...,xn.

For example, in the sentence ∀Y.∃X.(pet(Y) ∧ friend(X,Y)) the existential quantifier can
be dropped by replacing all the occurrences of the variable X by the Skolem term
a_friend_of(Y). The sentence becomes

∀Y.(pet(Y) ∧ friend(a_friend_of(Y),Y))

Cristian Giumale / Lecture Notes 6

6. Drop the universal quantifiers and pretend that all variables are universally quantified
implicitly.

pet(Y) ∧ friend(a_friend_of(Y),Y)

7. Distribute ∧ over ∨: (x ∧ y) ∨ z is replaced by (x ∨ z) ∧ (y ∨ z).

8. Flatten nested conjunctions and disjunctions. (x ∧ y) ∧ z is replaced by x ∧ y ∧ z
and (x ∨ y) ∨ z is replaced by x ∨ y ∨ z.

The sentence is in CNF. One more step is necessary for obtaining the INF format.

9. For each disjunction, group the negated atoms ¬x1 ∨...∨ ¬xn and the positive atoms
y1 ∨...∨ ym of the disjunction and replace the disjunction by the implication x1 ∧...∧ xn
⇒ y1 ∨...∨ ym.

Inference rules

A sound inference rule (or procedure) derives, starting from a given set of sentences, a new
sentence entailed by the sentences in the set. The simplest inference rule is modus ponens.

 p1 ∧ p2 ∧...∧ pn (q1 ∧ q2 ∧...∧ qn)⇒q (unify(pi,qi), i=1,n) = S
 __
 Subst(S,q)

The rule reads: if the sentences pi are true and the antecedents qi of the implication are true
under the unification substitution S (that unify pi and qi for all i=1,n) then the sentence
Subst(S,q) is true. Modus ponens is simple but is not complete. The reason is simple: not
all sentences can be written as Horn sentences. Therefore, the rule cannot be applied and
the sentences entailed by non-Horn sentences cannot be inferred.

A complete inference procedure is resolution. The generalized resolution rule for INF is:

 p1 ∧...∧ pi ∧...∧ pn1 ⇒ r1 ∨...∨ rn2

 s1 ∧...∧ sn3 ⇒ q1 ∨ q2 ∨...∨ qk ∨ ...∨ qn4 unify(pi,qk) = S

 Subst(S, p1 ∧...∧ pi-1 ∧ pi+1 ∧...∧ pn1 ∧ s1 ∧...∧ sn3 ⇒

 r1 ∨...∨ rn2 ∨ q1 ∨...∨ qk-1 ∨ qk+1 ∨ ...∨ qn)

For the particular case of Horn clauses the resolution rule is:

 (q1 ∧ q2 ∧...∧ qn1) ⇒ q

 (p1 ∧ p2 ∧...∧ q’ ∧...∧ pn2) ⇒ r unify(q,q’) = S
 __

 Subst(S, p1 ∧ p2 ∧...∧ pn2 ∧ q1 ∧ q2 ∧...∧ qn1 ⇒ r)

This last rule is used in Prolog as the base of the proof procedure. Proof procedures are built
using inference rules the application of which is decided by specific control strategies. The
proof problem is: given a set of initial sentences, call it Descr2, and a sentence P, find out if

2 Descr is considered a FOL description of a UoD, which can be generic or particular.

Cristian Giumale / Lecture Notes 7

Descr can entail P. The sentences in Descr can be classified into axioms and theorems. An
axiom specifies a basic fact of the UoD and cannot be derived from the rest of the sentences
in Descr. A theorem is a sentence entailed by the axioms and other theorems of Descr. By
convention, an axiom x that corresponds to the implication true ⇒ x, will be represented
simply as x. It is also useful to observe that ¬x ca be rewritten x ⇒ false.

An example of proof by refutation

Consider the following FOL description, which is a modified version of an example from the
book of Russell and Norvig “Artificial Intelligence - A Modern Approach”.

∀P,W,Q.(person(P)∧weapon(W)∧person(Q)∧hostile(Q)∧sells(P,W,Q)⇒ criminal(P))
∀M.(missile(M) ⇒ weapon(M))
∀W,P.(person(P) ∧ owns(P,W) ⇒ ∃Q.(person(Q) ∧ sells(Q,W,P)))
∀P.(person(P) ∧ ∀Q.(person(Q) ∧ hates(P,Q)) ⇒ hostile(P))

owns(foo,m1)
missile(m1)
person(foo)
∀P.hates(foo,P)

Applying the algorithm for converting FOL sentences to CNF and INF, the description above
can be rewritten as the following set of Horn clauses.

person(P)∧weapon(W)∧person(Q)∧hostile(Q)∧sells(P,W,Q)⇒ criminal(P)
missile(M) ⇒ weapon(M)
person(P) ∧ owns(P,W) ⇒ person(seller(W,P))
person(P) ∧ owns(P,W) ⇒ sells(seller(W,P),W,P)
person(P) ∧ person(Q) ∧ hates(P,Q) ⇒ hostile(P)

owns(foo,m1)
missile(m1)
person(foo)
hates(foo,P)

Above, seller(W,P) is the Skolem term introduced by the elimination of the existential
quantifier. The problem is to check if, according to the description, is there a criminal.

A complete proof procedure using resolution is by refutation. We consider that the goal g to
be proved is not true and then try to obtain a contradiction using the sentences of the given
description, i.e. (Descr ∧ ¬g ⇒ false) ⇔ (Descr ⇒ g). Hence, assume there is no
criminal, i.e. ¬criminal(X) or, equivalently, criminal(X) ⇒ false and add this clause to
the description above.

The inference rule applied is the resolution for Horn clauses. The order of resolution steps
follows a backward chaining path, from the goal to the axioms. In addition, the order of these
steps is selected in such a way as to avoid backtracking and to shorten as much as possible
the resolvents.

During the proof a current substitution called S is constantly updated. It cumulates the
substitutions resulted from all the valid unifying processes performed so far along the current
path traversed in the AND/OR proof tree. Recall that v/X means the variable X is bound to v
and notice that v can be a variable. All substitutions are performed in situ, although this is not
happening in the real proof process (it will be difficult to backtrack). For each use of a Horn
clause new variables are created for that clause. The resolvent is written in italic.

Cristian Giumale / Lecture Notes 8

negated goal: criminal(X) ⇒ false

criminal(X) ⇒ false
person(X)∧weapon(Y)∧person(Q)∧hostile(Q)∧sells(P,W,Q)⇒ criminal(P)

S={X/P}
__
person(X)∧weapon(W)∧person(Q)∧hostile(Q)∧sells(X,W,Q) ⇒ false
person(foo)

S= {foo/Q,X/P}
__
person(X)∧weapon(W)∧hostile(foo)∧sells(X,W,foo) ⇒ false
misile(M) ⇒ weapon(M)

S= {M/W,foo/Q,X/P}
__
person(X)∧missile(M)∧hostile(foo)∧sells(X,W,foo) ⇒ false
missile(m1)

S={m1/M,m1/W,foo/Q,X/P}
__
person(X)∧hostile(foo)∧sells(X,m1,foo) ⇒ false
person(P1)∧owns(P1,W1) ⇒ person(seller(W1,P1))

S={seller(W1,P1)/X,m1/M,m1/W,foo/Q,seller(W1,P1)/P}
__
person(P1)∧owns(P1,W1)∧hostile(foo)∧sells(seller(W1,P1),m1,foo) ⇒ false
owns(foo,m1)

S={foo/P1,m1/W1,seller(m1,foo)/X,m1/M,m1/W,foo/Q,seller(m1,foo)/P}
__
person(foo)∧hostile(foo)∧sells(seller(m1,foo),m1,foo) ⇒ false
person(foo)

S={foo/P1,m1/W1,seller(m1,foo)/X,m1/M,m1/W,foo/Q,seller(m1,foo)/P}
__
hostile(foo)∧sells(seller(m1,foo),m1,foo) ⇒ false
person(P2)∧person(Q2)∧hates(P2,Q2) ⇒ hostile(P2)

S={foo/P2,foo/P1,m1/W1,seller(m1,foo)/X,m1/M,m1/W,foo/Q,seller(m1,foo)/P}
__
person(Q2)∧hates(foo,Q2)∧sells(seller(m1,foo),m1,foo) ⇒ false
hates(foo,P3)

S={P3/Q2,foo/P2,foo/P1,m1/W1,seller(m1,foo)/X,m1/M,
m1/W,foo/Q,seller(m1,foo)/P}

__
person(P3)∧sells(seller(m1,foo),m1,foo) ⇒ false
person(foo)

S={foo/P3,foo/Q2,foo/P2,foo/P1,m1/W1,seller(m1,foo)/X,
m1/M,m1/W,foo/Q,seller(m1,foo)/P}

__
sells(seller(m1,foo),m1,foo) ⇒ false
person(P4)∧owns(P4,W4) ⇒ sells(seller(W4,P4),W4,P4)

S={foo/P4,m1/W4,foo/P3,foo/Q2,foo/P2,foo/P1,m1/W1,
seller(m1,foo)/X,m1/M,m1/W,foo/Q,seller(m1,foo)/P}

__
person(foo)∧owns(foo,m1) ⇒ false
person(foo)

S={foo/P4,m1/W4,foo/P3,foo/Q2,foo/P2,foo/P1,m1/W1,
seller(m1,foo)/X,m1/M,m1/W,foo/Q,seller(m1,foo)/P}

__
owns(foo,m1) ⇒ false
owns(foo,m1)

S={foo/P4,m1/W4,foo/P3,foo/Q2,foo/P2,foo/P1,m1/W1,
seller(m1,foo)/X,m1/M,m1/W,foo/Q,seller(m1,foo)/P}

__
true ⇒ false i.e. false

contradiction

Cristian Giumale / Lecture Notes 9

Therefore, there is a criminal in the story. Who? Look at the value bound to the variable X of
the goal criminal(X). Its value is seller(m1,foo). Although we don’t know precisely who
is this person, we have been able to prove that such a person exists.

AND

AND

pi1 ⇒ false

pi1 ∧ pi2 ∧...⇒ qi
unify(q,qi)

pim ⇒ false

OR

OR
OR

sj1 ∧ sj2...⇒ rj
unify(pi1,rj)

q ⇒ false

Figure 1. A proof AND-OR tree

In the presence of a control procedure the proof is no longer a linear structure as above.
Some paths followed in the process of proof may fail. In this case backtracking occurs in
order to try other possible resolvents. The structure of the proof process is an AND/OR tree.
An AND node corresponds to a conjunction of resolvents. An OR node corresponds to the
choice of the sentence to be used for producing a new resolvent.

To have a complete proof procedure the tree traversal should be breadth-first oriented. The
depth-first traversal is making the proof procedure incomplete due to possible infinite paths
that are created by circular sentences. It is interesting to notice that in the example above
there are such infinite paths created by the circular clause:

person(P) ∧ owns(P,W) ⇒ person(seller(W,P))

In a depth-first traversal of the proof tree we could enter an infinite loop trying to resolve the
goal person(P).

person(P) ⇒ false
person(P1) ∧ owns(P1,W1) ⇒ person(seller(W1,P1))

S={seller(W1,P1)/P}
__
person(P1) ∧ owns(P1,W1) ⇒ false
person(P2) ∧ owns(P2,W2) ⇒ person(seller(W2,P2))

S={seller(W2,P2)/P1,seller(W1,seller(W2,P2))/P}

person(P2) ∧ owns(P2,W2) ∧ owns(P1,W1) ⇒ false
. . .

Cristian Giumale / Lecture Notes 10

Control strategies

There are two main control strategies: forward chaining and backward chaining. Forward
chaining is similar to the Agenda control mechanism in CLIPS. It allows an inference
procedure to derive all sentences that can be derived starting from Descr. It stops when the
goal to be proved is eventually derived. Backward chaining focuses the application of the
inference rule only on the relevant part of Descr, i.e. on these sentences that can effectively
contribute to the derivation of the given goal.

The backward-chaining algorithm for Horn clauses resolution is given in Caml below. Except
for the unification, it is close the executable kernel of a very simple theorem prover. The
Backward_chaining function works with sentences that do not contain variables. As an
exercise, the unify function could be rewritten to work with sentences containing variables.

The function Backward_chaining works with a list of rules, the rules from Descr. Each rule is
represented as a list; the head of the list contains the conclusion of the rule, the tail contains
the premises. The result returned is fail or succeed(substitution), where substitution
cumulates all the substitutions resulted from the unification process performed throughout the
inference process. In a simple (but inefficient) implementation substitution can be an
association list containing pairs (variable,value).

The control engine is the local function solve. It gets a list of goals, a list of Horn clauses
(called here rules), and the current substitution. If the list of goals is exhausted, i.e. all goals
are proved, the result is suceed(final_substitution). If the all rules are tried without
succeeding to prove the goals, fail is signaled. For each goal, solve tries all rules the
conclusion of which can unify with the goal (recall that the goal stands for a negated sentence
while the conclusion is a positive sentence). For each applicable rule, the premises of the rule
are appended at the end of the list of goals and solve is called recursively with the new
goals, all the rules in Descr, and the new substitution. In this way, the proof tree is traversed
breadth-first.

type 'subst Result = fail | succeed of 'subst list;;

let unify(atom1,atom2,substitution) =
 if atom1 = atom2 then succeed(substitution) else fail;;
unify : 'a * 'a * 'b list -> 'b Result = <fun>

let conclusion = hd and premises = tl;;
conclusion : 'a list -> 'a = <fun>
premises : 'a list -> 'a list = <fun>

let Backward_chaining all_rules goal =
 let rec solve =
 fun [] rules substitution -> succeed(substitution)
 | goals [] substitution -> fail
 | (goal::rest_goals as goals) (rule::rest_rules) substitution ->
 match unify(goal,conclusion(rule),substitution)
 with
 fail -> solve goals rest_rules substitution
 | succeed(new_substitution) ->
 match solve (rest_goals@(premises rule)) all_rules
 new_substitution
 with
 fail -> solve goals rest_rules substitution
 | succeed(new_subst) -> succeed(new_subst)
 in
 solve [goal] all_rules [];;
Backward_chaining : 'a list list -> 'a -> 'b Result = <fun>

Cristian Giumale / Lecture Notes 11

Observe that if Backward_chaining would be a coroutine, we could save the status of the
proof tree while returning a solution. The traversal of the tree could be resumed from the
interruption point producing step by step all the possible proofs of the given goal. This is what
happens in Prolog.

The conclusion and the premises of each rule are atomic sentences represented as values of
sum types. The representation is close to what a syntax checker would produce.

type Term = constant of string
 | var of string
 | funct of string * Term list;;

type AtomicSentence = predicate of string * Term list;;

let Descr = [
 (* friend(bibo,pussycat) ∧friend(pussycat,fred) => friend(bibo,fred) *)
 [predicate("friend",[constant "Bibo"; constant "Fred"]);
 predicate("friend",[constant "Bibo"; constant "Pussycat"]);
 predicate("friend",[constant "Pussycat"; constant "Fred"])];

 (* friend(bibo,pussycat) *)
 [predicate("friend",[constant "Bibo"; constant "Pussycat"])];

 (* friend(pussycat,fred) *)
 [predicate("friend",[constant "Pussycat"; constant "Fred"])]
];;

let goal = predicate("friend",[constant "Bibo"; constant "Fred"]);;

Backward_chaining Descr goal;;
- : '_a Result = succeed []

The backward-chaining control strategy combined with the refutation-based resolution - as
the proof procedure - offers an efficient proof engine for Horn clauses. There are logic
programming languages (such as Prolog) that use this proof engine. What they add, apart
from a convenient syntax, is a set of control mechanisms of the inference engine.

A program in a logic programming language consists of a set of axioms and inference rules
that can be used to prove given goals. The axioms, rules, and goals are sentences that state
properties and relationships of the objects of a given UoD. The aim of the program is merely
to prove rather than compute. This is the reason why logic programming offers less on the
side of arithmetic and more on the side of symbolic representation and on the way of
combining formulae. A remarkable representative of the logic-programming paradigm is
Prolog.

	The programming languages based on the Lambda calculus model
	Apart from these classes of languages, logic programming lan
	The syntax and semantics of first-order logic
	Unification
	Normal forms
	Inference rules
	S={X/P}
	S= {foo/Q,X/P}
	S= {M/W,foo/Q,X/P}
	S={m1/M,m1/W,foo/Q,X/P}
	S={seller(W1,P1)/X,m1/M,m1/W,foo/Q,seller(W1,P1)/P}
	S={foo/P1,m1/W1,seller(m1,foo)/X,m1/M,m1/W,foo/Q,seller(m1,f
	S={foo/P1,m1/W1,seller(m1,foo)/X,m1/M,m1/W,foo/Q,seller(m1,f
	S={foo/P2,foo/P1,m1/W1,seller(m1,foo)/X,m1/M,m1/W,foo/Q,sell
	S={seller(W1,P1)/P}
	S={seller(W2,P2)/P1,seller(W1,seller(W2,P2))/P}
	Control strategies

